Additional screening with ultrasound after negative mammography screening

in women with dense breasts: a systematic review

External review against programme appraisal criteria for the UK National Screening Committee (UK NSC)

Draft report

Review Group:	Jacoby Patterson
	Chris Stinton
	Lena Alkhudairy
	Amy Grove
	Pam Royle
	Hannah Fraser
	Hema Mistry
	Payagalage Senaratne
	Aileen Clarke
	Sian Taylor-Phillips
Correspondence to:	Chris Stinton
	Populations, Evidence and Technologies
	Division of Health Sciences
	Warwick Medical School
	University of Warwick
	Coventry CV4 7AL
Tel:	02476 574 701
Email:	C.Stinton@warwick.ac.uk

Date completed: 02/03/2018

1

Funding Acknowledgement

This research was commissioned by the UK National Screening Committee. Sian Taylor-Phillips, Chris Stinton, Hannah Fraser, Lena Alkhudairy, Amy Grove and Aileen Clarke are supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care West Midlands (NIHR CLAHRC WM). The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research, the UK National Screening Committee, Public Health England or the Department of Health. Any errors are the responsibility of the authors. The authors have no conflicts of interest.

Expert Acknowledgement

We would like to thank Dr Sue Astley, Dr Eleanor Cornford, Dr Stephen Duffy, Dr Jacqui Jenkins, Dr Olive Kearins, Dr Paul Pharoah, Dr Nisha Sharma, Dr Matthew Wallis and Dr Louise Wilkinson for providing advice and input into this research.

Patient and Public Involvement Acknowledgement

We would like to thank Jane Whitehurst for her advice and input into this work especially the lay summary.

Special thanks go to Peter Chilton of the CLAHRC WM for his work on the diagrams.

Contents

ABB	REVIATIONS	7
Exec	utive summary	9
Plain	text summary	16
Secti	on 1: Introduction	18
1.1	Background	18
1.2	Rationale, objectives and key questions	21
1.3	Objectives: Evidence Review	26
Secti		28
2.1	Methods of developing the protocol	28
2.2	Identification and selection of studies	28
2.3	Study selection	34
2.4	Data extraction	34
2.5	Assessment of quality/risk of bias in individual studies	34 34
2.6 Section	Evidence synthesis methods on 3: Results	34
3.1	Key question 1 (reliability and concordance)	35
	3.1.1 Description of the evidence	35
	3.1.2 Characteristics of included studies	35
	3.1.3 Analysis of the evidence	51
	3.1.4 Discussion	56
	3.1.5 Summary	57
3.2	Key questions 2a and 2b	58
	3.2.1 Description of the evidence	58
	3.2.2 Question 2a	60
	3.2.3 Question 2b	69
	3.2.4 Discussion	76
	3.2.5 Summary	76
3.3	Key question 3	77
	3.3.1 Description of the evidence	77
	3.3.2 Characteristics of the included studies	79
	3.3.3 Methodological quality of included studies	79
	3.3.4 Analysis of the evidence	80
	3.3.5 Discussion	90
	3.3.6 Summary	91
3.4 3	Key question 4 (cost-effectiveness)	92

3.4.1 Des	cription of the evidence	92
3.4.2 Cha	aracteristics of included studies	94
3.4.3 Met	hodological quality of included studies	96
3.4.4 Ana	lysis of the evidence	96
3.4.5 Dise	cussion	103
3.4.6 Sun	nmary	104
Section 4:	Discussion	105
4.2 Stren	ence and assessment of NSC screening criteria agents and limitations	105 109
	clusion/general interpretation of the results in the context of other evide	
	or policy, practice and future research	110
Section 5:	Conflict of interest and funding statement	112
REFERENCE		
Appendix 1	Search strategy	120
Question 1: W density? 120	hat are the reliability and validity of available methods to measure mammograp	blic breast
Question 2. Is	s mammographic breast density a risk factor for cancers being missed during	screening
(false negative	es/interval cancers)?	120
Question 3. W	hat is the test accuracy of ultrasound in comparison to mammography in we	omen with
dense breasts?		121
Question 4. Fo	r women attending breast screening in the UK, what are the cost-consequences	of adding
	c density measurements, and then ultrasound for those found to h	-
mammographi	c breast density?	123
Appendix 2	PRISMA record selection	127
Question 1		127
Question 2		128
Question 3		129
Question 4		130
Appendix 3	Excluded studies	131
Question 1		131
Question 2		136
Question 3		138
Question 4		139
Appendix 4	Data extraction form and tables with quality assessment	141
Data extraction	n template for questions 1, 2 and 3	141
Data extraction	n table for question 4	147
Appendix 5	Quality assessment tools	148
Question 1: Qu	uality Appraisal of Diagnostic Reliability (QAREL) Checklist	148
Question 2: Q	UIPS	148

Question 3: USPTF criteria for assessing internal validity of individ		52 152
USPTF criteria for assessing external validity (generali	zability) of individual studies	153
USPTF Global rating of external validity (generalisabil	lity) 1	155
QUADAS-2 (adjusted)	1	155
Question 4: CHEERS Appendix 6 Included studies Question 1	1	58 162 62
Table a: Design and quality issues	1	162
Table b: Results: Test-retest reliability	1	180
Table c: Results: Inter-rater reliability	1	182
Table d: Results: Concordance	1	188
Figure e: Diagram of concordance (excluding untrained	1 students) 1	193
Question 2a Table a: Design and limitations		95 195
Table b: Mammographic sensitivity and risk of interval	l cancers by density 1	198
Question 2b Table a: The identified systematic reviews and the extension of our review.	ent to which their methods matched the	205 205
Table b: Quality assessment of systematic reviews usin		209
Table c: Systematic review results, search date, number	-	212
Question 3 Table a: Study design	2	213 213
Table b: Recall, biopsy and cancer detection rates from ultrasound in mammogram-negative women	-	for 223
Table c: Sensitivity, specificity, positive predictive value predictive value of ultrasound in mammogram-negative		ive 224
Figure d: Forest plot of sensitivity and specificity of ad negative dense breasts	e	228
Question 4		29
Table a: Characteristics and findings of cost-effectiven ultrasound in women with mammography-negative der		229
Table b: Assessment of the fully-published UK cost-eff includes MRI as well as ultrasound)	•	231
Table c: Quality assessment of studies using CHEERS	2	236
5		

Appendix 7 Criteria for appraising the viability, effectiveness and appropriateness of a screening programme 241

ABBREVIATIONS

ABUS	Automated whole breast ultrasound
AMSTAR	A measurement tool to assess systematic reviews
AUC	Area under the receiver operating characteristic curve
BI-RADS	Breast Imaging Reporting and Data System
BMI	Body mass index
BRCA	Breast Cancer gene
BSP	Breast Screening Programme
CC	Cranio-caudal
CCC	Concordance Correlation Coefficient
CHEERS	Consolidated Health Economic Evaluation Reporting Standards
DBT	Digital breast tomosynthesis
DCIS	Ductal carcinoma in situ
DM	Digital mammogram
DOR	Diagnostic Odds Ratio
ER/PR	Estrogen receptor/progesterone receptor
ES	Effect size
FFDM	Full-field digital mammography
FN	False negative
FP	False positive
GRRAS	Guidelines for Reporting Reliability and Agreement Studies
HER2	Human epidermal growth factor receptor type 2
HHUS	Hand-held ultrasound
HR	Hormone receptor
HRT	Hormone replacement therapy
ICC	Intraclass correlation coefficient
ICER	Incremental Cost-Effectiveness Ratio
IQR	Inter-quartile range
Kw	Weighted kappa
LIBRA	Laboratory for Individualized Breast Radiodensity Assessment
LR+/-	Positive/negative likelihood ratio
MBTST	Malmo Breast Tomosynthesis Screening Trial
MLO	Medio-lateral oblique
MRI	Magnetic resonance imaging
NHSBSP	UK National Health Service Breast Screening Programme
NPV	Negative predictive value
NSC	National Screening Committee
OR	Odds ratio
PD	Percent density
PHE	Public Health England
PPV	Positive predictive value
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses
7	

PROSPERO	The International Prospective Register of Systematic Reviews
QALY	Quality-adjusted life year
QAREL	Quality Appraisal of Diagnostic Reliability
QUADAS	Quality assessment tool for diagnostic accuracy studies
QUIPS	Quality in Prognostic Studies
RANZCR	The Royal Australian and New Zealand College of Radiologists
RCT	Randomised controlled trial
REA	Rapid evidence assessment
ROC	Receiver operating characteristic
RR	Relative risk
SD	Standard deviation
sDM	Synthetic digital mammogram
SR	Systematic review
SXA	Single energy x-ray absorptiometry
TN	True negative
ТР	True positive
UK	United Kingdom
US	Ultrasound
USA	United States of America
USPTF	United States Preventive Task Force
VDG	Volumetric density grade

Executive summary

Background: The NHS Breast Screening programme screens women aged 50-70 using mammography every 3 years, with no routine measurement or reporting of mammographic breast density. Some other countries report mammographic breast density to women attending screening, as the dense breast parenchyma may obscure cancer on a mammogram and density may itself be a risk factor for developing cancer. Others offer additional ultrasound testing for women with mammographically dense breasts.

Objectives: To determine the balance of benefits and costs of measuring breast density on mammography, and offering women with dense breasts supplemental ultrasound screening. The United Kingdom (UK) National Screening Committee (NSC) criteria for appraising screening programmes state that there should be a validated screening test; there should be robust evidence about the association between the risk factor and serious or treatable disease; and screening should provide value for money. Therefore, we aim to answer the following questions:

Question 1: What are the reliability and validity of available methods to measure mammographic breast density?

Question 2a: Is mammographic breast density a risk factor for cancers being missed during screening (masking on mammograms/false negatives/interval cancers)?

Question 2b: Is mammographic breast density a risk factor for developing breast cancer?

Question 3: What is the test accuracy of ultrasound following mammography in comparison to mammography to detect cancer in women with dense breasts?

Question 4: For women attending breast screening in the UK, what are the cost-consequences of adding mammographic density measurements, and then ultrasound for those found to have high mammographic breast density?

Methods: Systematic reviews for each question. The search strategy combined terms for breast; screen OR screening OR "early detection of cancer"; cancer OR carcinoma OR DCIS OR malignant; ultrasound OR ultrasonography OR ultrasonics and dense OR density.

Data Sources: MEDLINE (2000-July 2017), Embase (2000-July 2017), the Cochrane Library (Cochrane Database of Systematic Reviews, CENTRAL, DARE and HTA databases) and Web of Science (Science Citation Index Expanded, Social Sciences Citation Index).

Study eligibility criteria: The key inclusion criteria are:

Participants: Women aged 47-73 attending breast cancer screening from the general population.

Interventions/comparators: Methods of measuring mammographic breast density (e.g. BI-RADS, Volpara, Quantra, Cumulus, ImageJ), and mammography plus ultrasound versus mammography only as a screening test for breast cancer.

Outcomes: For density measurements: Test-retest and inter-reader reliability; concordance between methods. For the masking risk of density on mammograms: the proportion of women who develop interval cancers. For the association between mammographic breast density and breast cancer: the proportion of women who develop breast cancer (and different types of breast cancer, e.g. the more aggressive interval cancers) by density level. For supplemental ultrasound screening: recall, cancer detection, false positive and false negative rates. For cost-consequences: the cost per extra case detected.

Duplicate study selection and data extraction: Both study selection (using pre-specified inclusion and exclusion criteria) and data extraction (using a pre-piloted data extraction form) were carried out by two reviewers.

Study quality appraisal methods: Studies of reliability of density assessment were appraised using Quality Appraisal of Diagnostic Reliability (QAREL) criteria; for the association between mammographic breast density and breast cancer, we used the Quality in Prognostic Studies (QUIPS) criteria; and for the screening accuracy of ultrasound, we used the tool of the US Preventive Task Force (USPTF) and the Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS-2) form; and for the cost-effectiveness studies we used the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) form.

Synthesis methods: Data was analysed with a narrative synthesis

Results: Question 1: What are the reliability and validity of available methods to measure mammographic breast density? Our electronic search identified 2186 unique records, of which 123 were examined as full texts, and 31 papers were included, describing 27 studies. The density measurement methods examined were visual (percent density or BIRADS classification edition 3, 4 or 5); semi-automated (Cumulus, ImageJ or DM-Scan); or fully automated (Densitas, DM-Scan, Laboratory for Individualized Breast Radiodensity Assessment [LIBRA], Quantra, single energy x-ray absorptiometry [SXA] method or Volpara). We found no multi-centre that included representative samples of women and raters, that assessed repeat testing within the 2-year time-frame.

Test-retest reliability (the same images re-read by the same reader) was "moderate" to "almost perfect", with estimates of 0.54-0.95 for visual methods; 0.92 for semi-automated methods and 0.85 for automated methods.

Inter-rater reliability was "fair" to "almost perfect", varying from 0.38-0.96 for visual methods; and 0.83-0.92 for semi-automated methods.

In the largest real-world study, among women with consecutive mammograms interpreted by different radiologists (n = 34,271 women), at a median interval of 1.1 years (inter-quartile range [IQR] 1.0 to 1.3 years), 27.0% of women with dense breasts (BIRADS categories 3 or 4) at the first examination had nondense (BIRADS categories 1 or 2) breasts at the second examination, and 11.4% of women with nondense breasts at the first examination had dense breasts at the second examination.

Semi-automated and automated methods were more consistently reliable than visual methods.

Concordance between visual and automated methods was "fair" to "almost perfect" across different studies (0.28-0.86). Between different semi-automated methods, it was "almost perfect" (0.80-0.84). Between semi-automated and automated methods, it was "substantially different" to "substantial" (0.79); 46-52% of patients were assigned to the same quintiles by different methods. Between automated methods, there was "substantial agreement" (0.64); 50-66% of patients were assigned to the same quintiles. Even the fully-automated methods Volpara and Quantra, which are both individually highly reliable, were not interchangeable.

Results: Question 2: The searches identified 3794 studies through electronic databases; 261 records were examined at title and abstract stage, of which 54 were examined as full texts.

Question 2a: *Is mammographic breast density a risk factor for cancers being missed during screening (masking on mammograms/false negatives/interval cancers)?* We included seven studies, none at low risk of bias. Sample size ranged from 60 to 405,191. The studies were conducted in Australia, Belgium, The Netherlands and the USA. All found a reduced sensitivity of mammography and/or an increased risk of interval cancers with increasing mammographic breast density.

Question 2b: Is mammographic breast density a risk factor for developing breast cancer? We found five systematic reviews for this question and therefore conducted a review of reviews. The strength of the association between mammographic breast density and risk of breast cancer and the consistency of results between studies using varying methods, designs and locations suggests that mammographic breast density is an independent risk factor for breast cancer.

Results: Question 3: What is the test accuracy of ultrasound following mammography in comparison to mammography to detect cancer in women with dense breasts? Searches of electronic databases identified 4539 unique studies. 258 records were examined at title and abstract stage, of which 25 were examined as full texts. Eleven of the papers (reporting on nine studies) were subsequently included in the review. We found no good-quality studies.

Sensitivity of ultrasonography for women with dense breasts with negative mammography ranged from 44% to 100% between studies; specificity from 63% to 100%. The study with the highest sensitivity and specificity included around 35% of women outside the 50-70 year age range, so may not be generalisable to the UK screening population. Recall rates were 9.1 to 370 per 1000; only two of the ten studies providing data on recall rates had a recall rate for ultrasound below 10%, which is the standard from the quality assurance guidelines for breast cancer screening radiology from the NHS Breast Screening Programme (BSP)¹ for the prevalent screening round. The positive predictive value of recall (PPV₁; the chance of having cancer if recalled) ranged from 0.51% to 26.7%. Biopsy rates were between 7.3 and 66 per 1000. The positive predictive value of having a biopsy (PPV_2 ; the chance of having cancer if the woman has a biopsy) ranged from 2.33% to 80.8%. The rate of benign biopsies (false positives) ranged from 2.9 to 51 per 1000. Rates of additional cancer detection with ultrasound were 0 per 1000 to 7.1 per 1000. Rates of detection of small (<15mm) cancers ranged from 0 per 1000 to 2.8 per 1000. At least some of the cancers detected were of high grade and associated with positive lymph nodes. It is unclear whether the additional detection by supplemental ultrasound of small, node-negative, low grade cancers (which have a good prognosis) would be beneficial in terms of reduction of overall mortality or reduction in the rate of interval cancers or to what extent this represents overdiagnosis.

Results: Question 4: For women attending breast screening in the UK, what are the costconsequences of adding density measurements, and then ultrasound for those found to have high mammographic breast density? We found four cost-effectiveness studies, of which only one was conducted in the UK. This UK study found that the current screening approach plus supplemental ultrasound offered to women with high mammographic breast density (defined using volumetric density grade [VDG3 and VDG4), plus magnetic resonance imaging (MRI) for women at high risk, does not appear to be a cost-effective alternative when compared with the current UK National Breast Screening Programme (NBSP):

- Incremental cost-effectiveness ratio (ICER) vs. No screening (3.5% benefits and costs discount rate [DR]): £30,772 per quality-adjusted life year (QALY) gained
- ICER vs. UK NBSP (3.5% benefits and costs DR): £212,947 per QALY gained
- ICER vs. No screening (1.5% benefits, 3.5% costs DR): £15,065 per QALY gained
- ICER vs. UK NBSP (1.5% benefits, 3.5% costs): £105,412 per QALY gained.

The first study in the USA reported that using costs of \$250 per ultrasound and \$2,400 per ultrasound-guided biopsy, the cost per breast cancer found was estimated to be \$110,241. The second study in the USA used a theoretical calculation and reported that the cost-benefit of early detection of stage 1 disease results in annual capital cost savings of \$22.75 per screened patient in the USA population. The third study in the USA reported that supplemental ultrasound screening for women with dense breasts undergoing screening mammography would substantially increase costs while producing relatively small benefits in terms of breast cancer deaths averted and QALYs gained. The ICER was \$325,000 per QALY gained for women with heterogeneously or extremely dense breasts (biennial screening). Restricting supplemental ultrasound screening to women with extremely dense breasts the ICER was \$246,000 per QALY gained (biennial screening). For annual screening the ICERs were even higher than biennial screening.

Only the UK study was designed as a cost-effectiveness analysis, and the intervention in that study included not only ultrasound screening for women with dense breasts but also MRI screening for women at high-risk, so the cost-effectiveness of the ultrasound component only cannot be properly established.

Discussion: The key question 1 is whether women are reliably categorised into dense or non-dense categories, irrespective of the reader, the method or the time interval (within the 2-year interval within which density is unlikely to change significantly for a woman). High quality studies would have low-risk of bias and should also be generalisable to our population in terms of the women (a large number of representative women from a general screening population) and the readers (a large number of readers within a multi-centre study of general screening, rather than single centre studies or readers specially trained for a research study). It should be noted that our review included general screening populations (which could include the usual proportion of both high- and average- risk women) and we excluded studies solely in high-risk women. In our review, the reported reliability within and between readers and the concordance between different density measurement methods varied, with many women being classified differently between readings.

Given that mammographic breast density is a risk factor for development of breast cancer (question 2b), and that breast cancer may be missed by mammography in women with dense breasts (question 2a), women with dense breasts may require supplementary screening over and above the mammography offered to women without this risk factor. For this to be feasible, it would require a) a reliable method of mammographic breast density assessment with a standardised definition of high mammographic breast density (question 1) and b) a supplementary test that was sensitive, specific, accurate (question 3) and cost-effective (question 4). Cost-effectiveness studies from the USA and the UK concluded that supplementary ultrasound was not cost-effective.

Are NSC screening criteria met?

NSC criterion 1: Questions 2a and 2b: There should be robust evidence about the association between the risk or disease marker and serious or treatable disease: **Met**. There was a strong consistent association between mammographic breast density and risk of breast cancer. There were consistent findings of reduced sensitivity of mammography and/or increased risk of interval cancers with increasing mammographic breast density.

NSC criterion 4: *Questions 1 and 3*: There should be a simple, safe, precise and validated screening test: **Not met**. It is difficult to validate the density methods when there is no gold standard applicable to breast density measurement. Ultrasound is not precise because it leads to large numbers of false positives, and while it can detect additional cancers not found on mammography, we do not have evidence as to whether this reduces either interval cancers or mortality, or to what extent identification of additional cancers represents overdiagnosis.

NSC criterion 14: Question 4. The opportunity cost of the screening programme (including testing, diagnosis and treatment, administration, training and quality assurance) should be economically balanced in relation to expenditure on medical care as a whole (value for money). Assessment against this criterion should have regard to evidence from cost-benefit and/or cost-effectiveness analyses and have regard to the effective use of available resource: **Not met.** There is insufficient evidence for cost-effectiveness of supplemental ultrasound, and the available evidence suggests that it is not currently cost-effective.

Strengths and limitations:

We conducted a systematic review for each of the key questions. We searched four databases, date limits were applied, and only articles in the English language were included; therefore it is possible that relevant articles might have been missed, although search terms were broad. We included a wide scope of questions including cost-effectiveness. We built on a recent review of the relevant literature and used a systematic approach to the design of our search strategies and to inclusion and exclusion and quality assessment. Sifting and data extraction were performed by two reviewers. We performed thorough quality appraisal in duplicate; no studies were excluded on grounds of quality.

A limitation of the quality assessment tool used for the studies in question 1 is that five of the eleven questions relate to blinding, with studies marked down for a lack of blinding, which may be important for research studies, but in real-world screening practice, readers would not be blinded to

previous assessment of density or clinical information, and therefore real-world studies would be inappropriately graded as lower quality. Another limitation of research studies may be their design for readers to focus all their attention on breast density, making density the most important finding on the mammograms, which is not the case in real practice in which density is usually a secondary focus of attention. Therefore, studies from real-world practice may be more informative than those in density-focused research settings.

None of the studies we found for question 2a were at low risk of bias. For question 2b, the most recent systematic review included Asian women only; the previous one contained very limited information on systematic review methods so scored poorly on the "A measurement tool to assess systematic reviews" (AMSTAR) quality criteria; the previous two focused on cancer type (Human epidermal growth factor receptor type 2 [HER2] over-expression and estrogen receptor positivity); and the earliest included review did not report the population covered or other details of the included or excluded studies.

For question 3, we updated the 2016 United States Preventive Task Force (USPTF) review, using similar search terms and quality assessment tools. However, full details of these methods were not available so relied on interpretation of the information that was present in the report. We complemented this method by carrying out our own quality assessment using the QUADAS-2 tool on both our update papers and also the original papers included in the USPTF review. However, it should be noted that some of the papers included in the USPTF review did not match our inclusion criteria (e.g. they included film mammography as well as digital). There were no good-quality studies in the question 3 update to the USPTF review – the authors of that review also noted the poor quality of the evidence base.

For question 4, four studies were included but only the one UK study was designed as a costeffectiveness analysis, and collected and reported the required information for an economic evaluation. However, the intervention in that study included not only ultrasound screening for women with dense breasts but also MRI screening for women at high-risk, so the cost-effectiveness of the ultrasound component only cannot be properly established.

Conclusions and implications of key findings: There is strong and consistent evidence both that dense breasts increase the risk of breast cancer and decreases the sensitivity of mammography to detect cancers. Supplemental ultrasound can detect additional cancers in women with negative mammography and dense breasts, but at a cost of additional false-positives, causing anxiety for many women, unnecessary biopsies and a cost per QALY gained outside acceptable thresholds. Supplemental ultrasound in all women with heterogeneously or extremely dense breasts does not appear to be cost-effective. Focusing only on women with extremely dense breasts would be more cost-effective than including women with heterogeneously dense breasts. However, there is variation in density assessment within and between readers for visual assessment methods. Objective automated methods are more reliable than visual measures.

The implications for research include the need for:

• Assessment of methods of measuring mammographic breast density which offer consistency, reliability and validity within a general screening population, which have a

proven strong relationship to both risk of cancer and risk of masking and which are practical in terms of scale up into the screening programme.

- Stronger evidence for benefits in terms of reduction in interval cancers or breast cancer mortality from supplemental ultrasound after mammographic breast density assessment.
- A randomised controlled trial including cost-effectiveness assessment to provide the necessary answers to the question of whether density assessment followed by ultrasound for women with dense breasts would be clinically and cost-effective within the screening programme. Follow up long enough to assess the different types of cancer found, along with any reductions in interval cancers, would be required in order to address the issue of potential overdiagnosis.

The implications for practice

If density assessment followed by supplementary ultrasound screening were undertaken in the current NHS breast screening programme, women could be categorised differently between readers or screening occasions unless a standardized programme-wide method of density assessment were used. Such a programme however would be likely to lead to increased anxiety and resource use (for women identified as at higher risk who might not actually be at higher risk), and to confusion for women whose categorization changed. Our review suggests that the numbers of false positives and additional biopsies are unlikely to be justified and that there is as yet no clear cost effectiveness evidence to balance the benefits, harms and costs.

Systematic review registration number: CRD42017081213

Source of funding: PHE Screening

Plain text summary

Breasts are made up of a mixture of fibrous and glandular tissue and fatty tissue. Breasts are considered dense if they have a lot of fibrous or glandular tissue but not much fat. Having dense breast tissue may increase the risk of getting breast cancer. Dense breasts also make it more difficult to spot cancer on mammograms. Dense tissue appears white on a mammogram. Lumps, both benign and cancerous, also appear white. So mammograms can be less accurate in women with dense breasts. Studies have shown that ultrasound can help find breast cancers that can't be seen on a mammogram. However, ultrasound shows up more findings that are not cancer, which can mean testing and biopsies that aren't needed. Breast density is read on a mammogram by a radiologist, or using automated methods. We wanted to answer the question of whether measurement of mammographic breast density is reliable, that is, will the same reader (at different times), or different readers, or different measurement methods, always give the same answer about whether breasts are dense or not? This is important to find out if it is worthwhile measuring mammographic breast density, and doing extra tests (ultrasound) on women with dense breasts.

We carried out a systematic review of the literature to find information about the reliability of different mammographic breast density measurement methods among women attending breast cancer screening. We found that reliability varied between the studies. For example, in the largest study, among women with two mammograms interpreted by different radiologists, around a third had a different density assessment at the 2 examinations. With density described in two categories (dense or nondense), nearly a fifth of women had different density ratings at the 2 examinations; around a quarter of women with dense breasts at the first examination were stated to have nondense breasts at the second examination, and around a tenth of women with nondense breasts at the first examination. Readers vary in their interpretation of mammographic breast density: some readers rated less than a third of women with dense breasts, while other readers rate over half of women with dense breasts. There was a lot of variation in density assessment within and between readers in the studies we found. The automated methods appear to be more reliable than human readers, but so far there isn't enough high-quality evidence to support this, and even automated methods do not give the same answers as each other, as they define density differently.

We found several systematic reviews suggesting that women with dense breasts are more likely to develop breast cancer, and other studies reporting that mammograms are less likely to pick up cancers if women have dense breasts.

We updated a recent large USA review of ultrasound following a negative mammography screen, and found that it still missed some cancers, while flagging up many areas of concern that turned out to be false alarms. We concluded that until more reliable methods of measuring mammographic breast density are available, there is not enough evidence to support supplemental ultrasound screening for women based on mammographic breast density measures in routine screening practice.

We found four studies giving information on cost-effectiveness of additional ultrasound in women with dense breasts. The extra ultrasounds substantially increased costs while finding relatively few 16

extra cancers, while causing many women anxiety because of "false-positive" tests (when concern over the scan results meant women had to have unnecessary biopsies which turned out not to be cancers). Overall the addition of ultrasound did not appear to be cost-effective.

Section 1: Introduction

1.1 Background

Breast cancer is the most common cancer in the UK, for example, there were 55,200 new cases in 2014, almost all in women². The risk varies with factors such as age, age at menarche, parity, age at birth of first child, age at menopause, body mass index (BMI), first-degree relatives with breast cancer, use of hormone replacement therapy (HRT) and breast density (the proportion of fibroglandular tissue in the breast).^{3,4} Around a third of female invasive breast cancer cases in England are detected by screening,⁵ another third occur in the interval between mammograms,⁶ and the rest are found in women outside the screening age range, or in men.

Mammograms are offered every 3 years in the UK National Health Service Breast Screening Programme (NHSBSP).⁶ Interval cancers have a worse prognosis than screen-detected cancers, so identifying women at higher risk of interval cancers (e.g. women with dense breasts) and offering them tailored screening interventions may improve the effectiveness of the NHSBSP.^{6,7} A recent report from the Public Health England (PHE) Working Party for Higher Risk Breast Screening suggests that if a specific programme for screening women with high risk becomes a priority, a way of identifying them will be needed, e.g. by detection of high density on a mammogram.⁸

There are several methods for measuring density in mammography.⁹ These include visual methods (assessment of the mammogram by a reader), semi-automated methods (the reader uses a computer-assisted technique) or fully automated methods (density assessed by a computer algorithm). However, there is no gold standard measurement of mammographic breast density applicable to all breast density measurements, and different measurement methods define the concept in various ways, limiting the concordance between methods. While MRI has been suggested as a type of gold standard, discrepancies occur between breast density measurement methods and this gold standard, particularly at higher densities.¹⁰

Visual assessments: the reader estimates the breast area, absolute density, absolute non-density/fat (all in cm²) and percent density (the ratio of parenchyma to fat as seen on mammography), from mammographic images (i.e. an area-based method). Methods include:

The four categories of mammographic breast density defined by the American College of Radiology's *Breast Imaging Reporting and Data System (BI-RADS)* 4th edition criteria:¹¹

- The breasts are almost entirely fatty (percent density <25%)
- There are scattered areas of fibroglandular density (percent density 25–50%)
- The breasts are heterogeneously dense, which may obscure small masses (percent density 51– 75%)
- The breasts are extremely dense, which lowers the sensitivity of mammography (percent density >75%).

In 2013, the *BI-RADS guidelines (fifth edition)* changed.¹² Categories A, B, C, and D are (a) fatty, (b) scattered density, (c) heterogeneously dense, and (d) extremely dense, but the percentages were removed, and more emphasis was given to the potential masking of the dense tissues.^{12,13} In the new guidelines, a breast could still be classified as dense even if it is < 50% glandular but the radiologist is concerned about an area of dense tissue that could potentially mask an underlying cancer.¹² Removing the percentages from the density assessment guidelines might be expected to 18

result in a reader's observation becoming more subjective, with an associated drop in intra- and inter-reader agreements, and an increase in the proportion of women categorised as having dense breasts and therefore becoming candidates for supplemental screening; both of these effects were apparent in a study comparing the BIRADS 4th and 5th editions.¹²

Semi-automated methods include:

Cumulus, QWIN and DM-Scan

In these methods, the operator outlines the total breast and sets a threshold to separate the dense tissue from the fatty tissue, so density is calculated as the dense area divided by the total breast area.^{9,14-16}

Fully automated methods include:

Area-based methods:

- The fully-automated version of *DM-Scan*, in which supervised pixel labelling is used to train a fully-automated classifier.¹⁵
- *Densitas' DM-Density* calculates the percentage of the breast image composed of dense tissue, accounting for its texture and distribution, in the "for presentation" digital image.
- The area-based *ImageJ*-based method, a fully-automated approach mimicking Cumulus by measuring several image parameters and choosing those shown to predict Cumulus density in a training set of images with known Cumulus-density readings.⁹ The selected parameters are then used in a regression model to estimate percent density values in other images.
- The Laboratory for Individualized Breast Radiodensity Assessment (LIBRA), which generates area-based measurements of breast area, dense tissue area and percentage density.¹⁷ The algorithm first identifies and extracts the breast region, then segments the dense tissue within the breast by using a combination of fuzzy c-means clustering and support vector machine classification.

Volume-based methods:

- Volpara is a volumetric method (i.e. estimated breast, absolute dense and absolute nondense volumes [all in cm³] and percent density, from digital images) using an algorithm to assess the x-ray attenuation of tissue between the image detector and the x-ray source on the basis of the pixel values on the images.¹⁸ Percent volumetric mammographic breast density is calculated as the ratio of fibroglandular tissue volume to total breast volume. This quantitative volumetric breast density value is mapped to an automated density grade using preset thresholds (automated density grade 1: <4.5%; grade 2: ≥4.5% and <7.5%; grade 3: ≥7.5% and <15.5%; grade 4: ≥15.5%) to map onto the BIRADS categories. It averages estimates from craniocaudal (CC) and mediolateral oblique (MLO) views for each breast and has an outlier removal process, and uses physical modelling of mammographic systems. Volumetric breast density measurement is based on the physical composition of the breast, compressed breast thickness, and x-ray information (tube potential [kVp], tube current [mAs], filter type and thickness).
- *Quantra* averages estimates from craniocaudal (CC) and mediolateral oblique (MLO) views for each breast using physical modelling of mammographic systems to calculate volumetric breast density (dense tissue volume/total breast volume) and area percentage breast

density (area of fibroglandular tissue/total breast area).¹⁹ Volumetric breast density measurement is based on the physical composition of the breast, compressed breast thickness, and x-ray information (tube potential [kVp], tube current [mAs], filter type and thickness). Quantra segments the estimated volumetric breast density to generate fractional quantised breast density (q_abd) values for each mammographic view. These are averaged to a total Q_abd for each patient (rounded) so Q_abd 1 is \leq 1.44; Q_abd 2 is 1.45 to 2.44; 3 is 2.45 to 3.44; 4 is \geq 3.45. Quantra Q_abd values 1 to 4 then map onto BIRADS 1 to 4 categories.

Single energy x-ray absorptiometry (SXA) uses a calibration phantom (made from materials that mimic glandular-fatty tissue ratios) on the unused corner of the compression paddle of the x-ray machine; it can only process CC images.⁹ An algorithm then analyses the digital image and estimates breast thickness and amount of fibroglandular density at each pixel. The pixel-specific estimates are then summed up to produce total breast estimates for dense tissue volume (in cm³), and volumetric percent density.

Of note, methods for research purposes only include Cumulus, ImageJ, LIBRA and SXA, while commercially-available methods include Densitas, Quantra and Volpara.²⁰

In one UK study (n=1969), the performance of three area-based approaches (BI-RADS, the semiautomated Cumulus, and the fully-automated ImageJ-based approach) and three fully-automated volumetric methods (Volpara, Quantra and SXA) were assessed in full-field digital mammography (FFDM) images from cases (the unaffected breast of women with newly-diagnosed breast cancer) and controls (women without breast cancer).⁹ For all methods, percent density was lower with increasing age, BMI, parity, postmenopausal status, and cancer risk was higher with higher density.⁹ However, the discrimination between cases and controls by density was low for all methods, highlighting its limited value in individual risk prediction.⁹ Practical issues identified in the study were:

- The methods were based on raw ("for processing") images, which need to be saved. Currently, only processed ("for presentation") images are routinely saved in most screening/clinical settings.⁹
- SXA readings were missing for many participants due to lack of a phantom, limiting its use in busy clinical settings, and it cannot be applied retrospectively to historical images.⁹
- Quantra (version 1.3) produced a digital image with the density measurements superimposed on it, which is convenient in screening/clinical settings, but not efficient in large-scale studies as the density measurements for analysis would have to be extracted manually. Different versions of Volpara (clinical and research) are available. There are currently no stand-alone software packages for SXA or ImageJ, limiting widespread implementation.⁹
- The volumetric methods attempted to estimate volumetric density from two-dimensional images, supplemented by information on the third dimension (using phantoms, breast thickness, or plate tilting). Three-dimensional imaging techniques, e.g. tomosynthesis or MRI, are not widely used clinically.⁹

Visual density assessment methods show a strong relationship between density and breast cancer, despite inter-observer variability, but are impractical for population-based screening.²¹ Cumulus was developed to improve reproducibility but also requires trained observers, and although separating the breast from the mammogram background is reproducible, assessment of the best threshold to

separate dense tissue from fat is less reproducible.²¹ Automated methods may be more practical for risk stratification.²¹

It is of note that breast density varies over time, with age, BMI and menopausal status. For example, in a USA mammography study²² (including 216,783 screening mammograms from 145,123 women), the percentage of mammograms reported as showing dense breasts varied by age and BMI as shown in the following Figure: 1

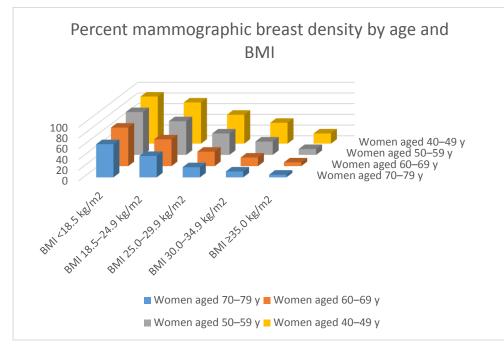


Figure 1. Percent mammographic breast density by age and BMI

Similar reductions in density with age are broadly seen in various ethnic groups including Black, Eastern Mediterranean, East Asian, South Asian/Malay, Mestizo/Hawaiian and White women, although absolute values of percent density vary.²³

Conventional film mammography screening is known to reduce breast cancer mortality among women aged 50–69 years, but mammography has lower sensitivity in younger women, partly due to their greater breast density.²⁴ Digital mammography is now standard throughout the UK,²¹ so it is important to assess methods of density assessment on digital mammograms for risk assessment, which could be used to inform interventions (e.g. weight loss for overweight/obese women) and/or supplemental screening methods in women found to be at increased risk.

1.2 Rationale, objectives and key questions

In the current UK breast screening pathway (see Figure 2), women in the general population aged 50–70 years receive mammography testing every 3 years with no density measurement, and no ultrasound (except as part of the follow-up tests for screen positives). Mammography screening takes 6 minutes to perform and results are returned within two weeks after examination by two independent experts (radiologist, radiography advanced practitioner or breast clinician); disagreements may be resolved by consensus or arbitration involving another reader. The potential pathway under investigation includes the addition of breast density estimated from mammograms (either every screen or less frequently) (see Figures 3 and 4). The aim of which would be to identify 21

women with a risk higher than the general population, based on mammographic breast density, who might benefit from an enhanced screening programme (using ultrasound). Women with dense breasts could then be offered ultrasound in addition to mammography at screening. Ultrasound and mammography may be at the same or different appointments (and therefore ultrasound screening may be given to all women with dense breasts [if the mammogram outcome is not yet known; Figure 3] or only be given to mammography-negative women [if only mammogram-negative women are recalled for ultrasound after the mammogram has been read; Figure 4]). Handheld ultrasound takes 20 minutes but results are available immediately; automated ultrasound is reported later. (The density measurements are also applicable to future potential changes to screening, for example digital tomography could be introduced for dense breasts only.) Women receive further investigations (e.g. biopsy for definitive diagnosis) if this is indicated by either ultrasound or mammography.

Figure 2: Current pathway

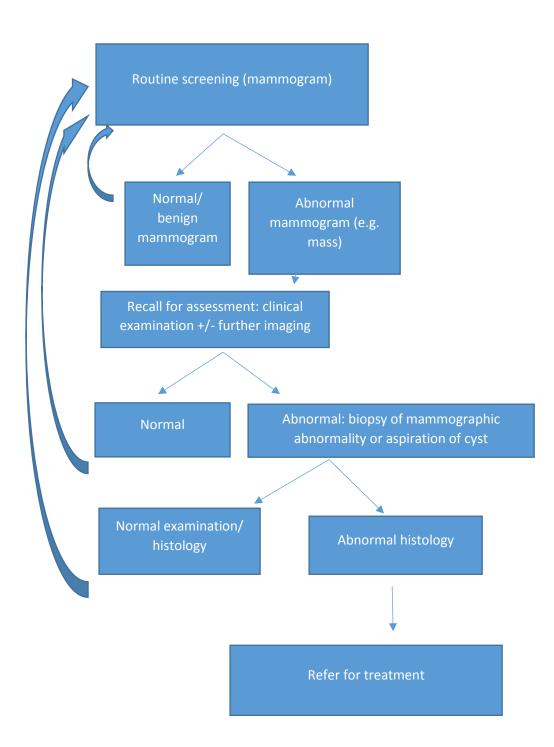
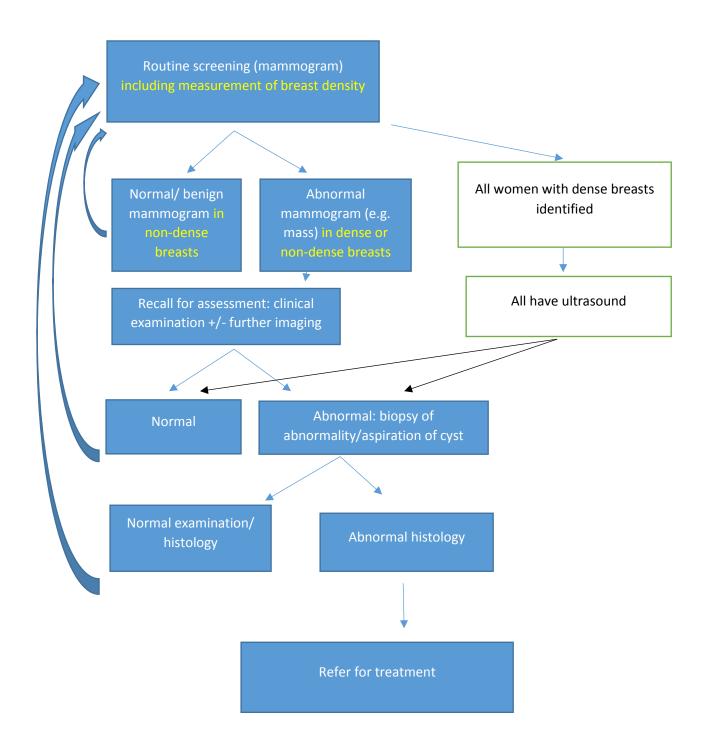
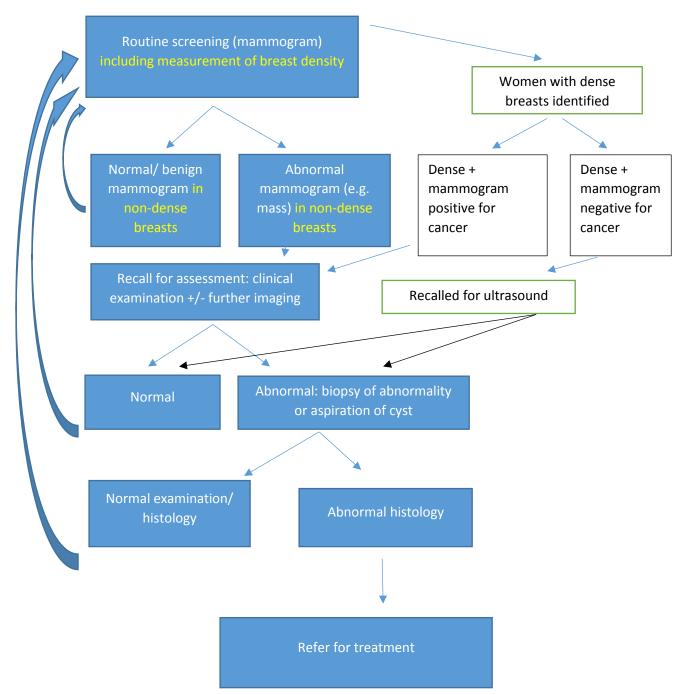




Figure 3: Pathways under investigation: all women identified with dense breasts get ultrasound

24

Figure 4: Pathways under investigation: women identified with dense breasts whose mammogram is negative for cancer get ultrasound

Policies about supplemental screening vary. For example, in the USA, legislation in many states requires that providers notify patients about their mammographic breast density, and in some cases, requires insurance coverage of subsequent supplemental screening.²⁵ This raises questions for women and their doctors about the interpretation of screening results and the need for additional testing.²⁵ If the assessment of mammographic breast density is not reliable (e.g. variability in breast density determinations between readers or over time), this could undermine women's confidence in the screening process and leave them uncertain about their risk for breast cancer.²⁵ Therefore it is important to determine the reliability of the methods of assessment of mammographic breast density.

To assess evidence about the association between mammographic breast density and serious or treatable disease, it is important to understand to what extent breast density is associated with various subtypes of breast cancer, including interval versus screen-detected cancer; invasive versus in situ lesions; and characteristics relating to the degree of differentiation, aggressiveness or receptor status of cancers. Ultrasound as an additional screening test in women found to have dense breasts could detect more cancers than mammography alone, but could also lead to increases in recall and biopsy rates, anxiety, over-diagnosis and increased costs.²⁵ It is therefore important to assess both the test characteristics (sensitivity, specificity, false negatives, false positives etc.) and the cost consequences of supplemental screening, plus limited resource availability, particularly in regard to the personnel and time required for image acquisition and interpretation.

In 2012, the American College of Radiology published a position statement urging strong consideration of the benefits, possible harms and unintended consequences of including breast parenchymal information in the information given to women.²⁶ In particular they mentioned that:

- visual assessment of breast density is not reliably reproducible;
- the significance of breast density as a risk factor for breast cancer is highly controversial, and there is no consensus that density per se confers sufficient risk to warrant supplemental screening;
- while supplemental screening can detect cancer not found via mammography, it also results in additional false positive examinations and increases the number of benign breast biopsies, and there is no randomised trial data that shows that adding ultrasound to mammography screening saves lives; and
- there are costs involved in the additional testing.²⁶

It is therefore important for the UK to review the evolving evidence base and consider policy in the light of the reliability of density measurement and its significance (independent of other potential risk factors such as age, BMI, parity, family history etc.) as a risk factor for breast cancer, the properties of ultrasound as a supplemental screening test and its cost consequences.

1.3 Objectives: Evidence Review

We undertook a systematic review according to the UK NSC guidelines.²⁷ The UK NSC has produced criteria for appraising the viability, effectiveness and appropriateness of a screening programme²⁸ (see Appendix 7). The overall aim of this review was to determine the balance of benefits and harms, and the costs of measuring mammographic breast density, and of offering women with dense

26

breasts an ultrasound test. Table 1 below shows the four key questions of the review and how they map onto the NSC appraisal criteria.

Table 1: Key questions and NSC criteria

Key question for the review	NSC criterion
Question 1: What are the reliability and	NSC criterion 4: There should be a simple,
concordance of available methods to measure	safe, precise and validated screening test.
mammographic breast density?	
Question 2: 2a: Is mammographic breast	NSC criterion 1: There should be robust
density a risk factor for cancers being missed	evidence about the association between the
during screening (masking on	risk or disease marker and serious or treatable
mammograms/false negatives/interval	disease.
cancers)? 2b: Is mammographic breast density	
a risk factor for developing breast cancer?	
Question 3: What is the test accuracy of	NSC criterion 4: There should be a simple,
ultrasound following mammography in	safe, precise and validated screening test.
comparison to mammography to detect	
cancer in women with dense breasts?	
Question 4: For women attending breast	NSC criterion 14. The opportunity cost of the
screening in the UK, what are the cost-	screening programme (including testing,
consequences of adding density	diagnosis and treatment, administration,
measurements, and then ultrasound for those	training and quality assurance) should be
found to have high mammographic breast	economically balanced in relation to
density?	expenditure on medical care as a whole (value
	for money). Assessment against this criteria
	should have regard to evidence from cost
	benefit and/or cost effectiveness analyses and
	have regard to the effective use of available
	resource.

Section 2: Methods

2.1 Methods of developing the protocol

We undertook a systematic review according to the UK NSC's requirements. We incorporated guidance from commissioners and experts. The protocol is registered at PROSPERO: the International Prospective Register of Systematic Reviews (registration number: CRD42017081213).

2.2 Identification and selection of studies

Separate searches were conducted for each of the key questions, and the results downloaded into Endnote and de-duplicated. Full details of the searches are provided in Appendix 1. The search strategy comprised searching of electronic bibliographic databases, contact with experts in the field, and scrutiny of the references of included studies and relevant systematic reviews. We searched the following electronic databases: MEDLINE (2000-July 2017), Embase (2000-July 2017), the Cochrane Library (Cochrane Database of Systematic Reviews, CENTRAL, DARE and HTA databases), and Web of Science. The search was initially from 1 January 2000 for Q1 and Q2 and from 1 January 2005 for Q3 and Q4. However, it was planned that if recent a single high quality systematic review was identified that answered the research question, we would carry out an update of that existing systematic review including eligible studies published subsequent to the search date for the systematic review, to avoid duplication. If several systematic reviews were available for a question, we would conduct an overview of reviews for that question. The inclusion and exclusion criteria for each of the key questions are shown in Table 2.

Papers (non-systematic reviews) reporting pooled analysis from multiple studies, i.e. the studies had different sites/inclusion criteria but were not selected by a systematic search, were reference checked to ensure that eligible studies within the pooled analysis were included as individual studies in our review. Papers reporting studies conducted by the same organisation (same inclusion criteria/protocol) but different years/cohorts/sites were treated as a single study for data extraction. A paper reporting two separate cohorts (analysed separately) was treated as two separate studies. Multiple publications from the same study/cohort were data extracted together to avoid double counting. The most appropriate analyses were selected as the main findings (e.g. involving the largest number of women).

Key question	Inclusion criteria						Exclusion criteria
	Population	Intervention / Index test	Reference	Outcomes	Study design	Type and	
			standard /			language	
			comparator				
1. What are the	Women aged	Using digital	As for index	Test-retest	Cross-sectional	English	Population outside scope:
reliability and	47-73	mammograms only (not	test	reliability	studies, test	language	Age: Studies in which ALL the
concordance of	attending	film):		Inter-reader	quality studies	Full text	women fall OUTSIDE the age
available	breast cancer			reliability	nested within	report	range 47-73 years.
methods to	screening from	BI-RADS scale scored by a		Concordance	RCTs or cohort	From 2000	Population outside scope:
measure	the general	single qualified reader		between	studies, case-	onwards	high risk population e.g.
mammographic	population	BI-RADS scale scored by a		methods	control studies,		women with clinically
breast density?		group consensus of		Positive and	and test sets		significant Breast Cancer
		readers		negative	involving		(BRCA) 1/2 mutations or
		Volpara		concordance	multiple blinded		other familial breast cancer
		Quantra		between pairs	readings of		syndromes or women with
		Densitas		of tests	mammography		previous breast cancer;
		LIBRA		Comparison of	Minimum		symptomatic women, i.e.
		Cumulus		characteristics	number of		diagnostic (rather than
		Madena		of discordant	participants =		screening) mammograms.
		ImageJ (Stratus)		cases: in	100		Papers with mixed
		Single energy x-ray		particular			screening/diagnostic
		absorptiometry (SXA)		comparison of			populations were excluded
		DM-Scan		risk of breast			(unless screening populations
		Left breast/right breast		cancer and			were reported separately).
		comparison		measures of			Other: e.g. studies on
		The Royal Australian and		missing cancers			mastectomy or post-mortem
		New Zealand College of		at screening			specimens/rare tumours (e.g.
		Radiologists (RANZCR)		such as interval			malignant phyllodes)/
				cancers.			

Table 2. Inclusion and exclusion criteria for the four key questions

2a: Is	Women aged	Using digital	As for index	Single or head	Head to head or	English	animal/phantom/simulation
mammographic	47-73	mammograms only (not	test	to head studies	single arm	language	studies.
breast density a	attending	film):		(1 or more	studies: RCTs,	Full text	Intervention/comparator
risk factor for	breast cancer			types of test):	prospective	report	outside scope: studies
cancers being	screening from	BI-RADS scale scored by a		Proportion of	cohort, case-	From 2000	assessing one density
missed during	the general	single qualified reader		women who	control, nested	onwards	measure (e.g. Volpara)
screening	population	BI-RADS scale scored by a		have an interval	case-control, or		assessing two views (CC/MLO)
(masking on		group consensus of		cancer after	cross-sectional		were not included as test-
mammograms/		readers		screening by	studies		retest samples for reliability;
false negatives/		Volpara		density for each			a ssessing density of a mass
interval		Quantra		test			rather than of the breast as a
cancers)?		Densitas		Proportion of			whole; CT; MRI. Studies of
2b: Is		LIBRA		women who			cancer risk models were not
mammographic		Cumulus		have breast			included for question 2 unless
breast density a		Madena		cancer by			they reported the association
risk factor for		ImageJ (Stratus)		density for each			between density and cancer
developing		Single energy x-ray		test (includes			risk (unadjusted or age-
breast cancer?		absorptiometry (SXA)		reporting of			adjusted) separately from
		DM-Scan		absolute risk			other factors in the risk model
		RANZCR		which is of			(although multivariate
				particular			analyses were also extracted).
				interest in low			Outcome outside scope: e.g.
				density groups)			molecular or genome studies/
				Distribution of			pre-operative assessment of
				cancer type by			tumour size/ breast density as
				risk group for			an outcome of intervention
				each test			studies/ studies detecting
				Odds ratios			change in density over time
				(OR) or risk			>2 years or before versus
				ratios (RR) from			after the menopause.
				unadjusted			Study design outside scope:
				univariable			e.g. Survey/case report/grey

3. What is the test accuracy of ultrasound following mammography in comparison to mammography to detect cancer in women with dense breasts?	Women aged 47-73 with dense breasts attending screening from the general population	Ultrasound (automated/tomography [in the mammography machine or as a separate machine], or handheld if the whole breast is assessed) as a screening test for breast cancer Mammography (digital not film) as a screening test for breast cancer	Biopsy test for cancer, and follow up to interval cancers	density as a predictor of risk (and models adjusted for age only). Results to be stratified by age: <40 / 40- 49 / 50-70 / >70; or <46 / 47-73 / >73 years For cancer detection: Sensitivity and specificity Positive and negative predictive values 2x2 tables. Characteristics of extra cancers detected by US only and mammography only (comparison of discordant cases or	Head to head (mammography versus mammography plus ultrasound) test accuracy studies in the same population, or test accuracy of ultrasound in a mammography- negative population; cohort studies; randomised controlled trials	English language Full text report From 2005 onwards (cut off for relevant ultrasound technology)	letters, commentaries and conference abstracts). Other not relevant: e.g. different topic.
---	---	---	---	--	--	---	--

	1	1		1	
			diagonal cells in		
			2x2 table)		
			a) invasive		
			cancers only; b)		
			Ductal		
			carcinoma in		
			situ (DCIS)		
			separately		
			where		
			reported; c)		
			both invasive +		
			DCIS (total		
			cancers).		
			% DCIS		
			Prognosis		
			measures,		
			grade, stage,		
			nodal		
			involvement		
			Tumour type		
			(lobular or		
			ductal)		
			estrogen		
			receptor (ER)/		
			progesterone		
			receptor (PR)		
			status		
			Size.		
			Risk of		
			overdiagnosis		
			(especially with		
			repeated		
I	L				

attending breast screening in the UK, what are the cost- consequences of adding density47-73 invited toonlycase detected Cost per extra by type (e.g. cost per extraconsequence addition of costsFull textadding density measurements, and then ultrasound for those found to have high mammographiconlycase detected in particular cost of densityin particular cost on wardsFrom 2005 onwardscost per extra in populationpopulationonlycase detected in particular costonwards invasive? Nodes involved?)cot of involved?)cut and cost of cost per extra involved?)relevant involved?)	4. For women	Women aged	Supplemental ultrasound	Mammography	measurement of breast density) Cost per extra	Cost	English
breast density? review of these	screening in the UK, what are the cost- consequences of adding density measurements, and then ultrasound for those found to have high	to mammography screening from the general			Cost per extra case detected by type (e.g. cost per extra high risk case detected invasive? Nodes	model, or simple addition of costs in particular cost of density measurements and cost of ultrasound; cohort studies; randomised controlled trials;	Full text report From 2005 onwards (cut off for relevant ultrasound

2.3 Study selection

Firstly, we assessed any systematic reviews for each question of this review. The titles and abstracts of articles from the searches were assessed independently by two reviewers (see Table 2 for inclusion/exclusion criteria). Disagreements about inclusion/exclusion were resolved by retrieval of the full publication and consensus agreement. Full copies of all studies deemed potentially relevant were obtained and assessed independently by two reviewers. Any disagreements were resolved by consensus or discussion with a third reviewer. Details of studies excluded at each stage were documented (see Appendix 3).

2.4 Data extraction

Data were extracted by a single reviewer using a piloted data extraction sheet. All of the extracted data were checked by a second reviewer. Any disagreements were resolved by consensus or discussion with a third reviewer. An example data extraction sheet is provided in Appendix 4.

2.5 Assessment of quality/risk of bias in individual studies

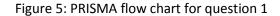
Papers for question 1 were assessed using the Quality Appraisal of Diagnostic Reliability (QAREL) Checklist.²⁹ Papers for question 2a were assessed using the Quality in Prognostic Studies (QUIPS)³⁰ and systematic reviews for question 2b were assessed using the AMSTAR criteria.³¹ Papers for question 3 were planned to be assessed using the modified quality assessment tool for diagnostic accuracy studies (QUADAS-2);³² however, a high-quality systematic review was identified (USPTF)²⁵ and updated. Therefore we used the same quality assessment criteria as that review (USPTF criteria), in addition to the QUADAS-2 as originally planned. For question 4, papers were assessed using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist.³³

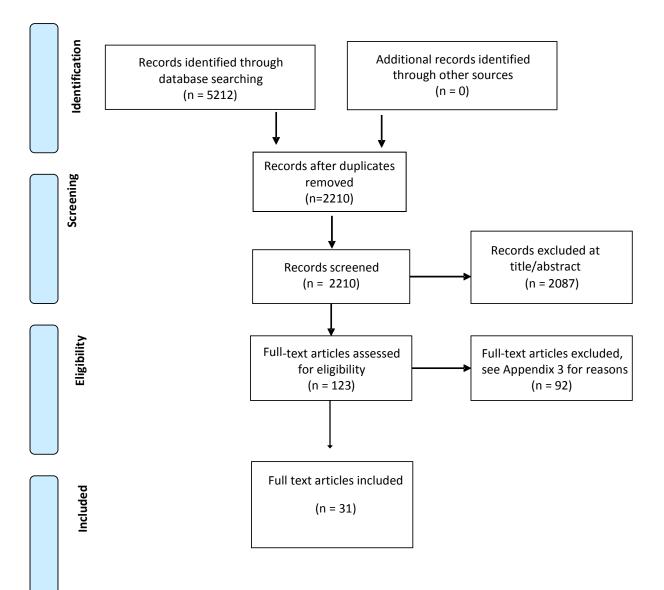
Quality appraisal was undertaken independently by two reviewers, with disagreements resolved through consensus or in discussion with a third reviewer. Quality assessment forms are shown in Appendix 5.

2.6 Evidence synthesis methods

Results of each question were narratively synthesised. Where outcomes of interest were not reported, we calculated values where sufficient data were reported. For question 1, kappas were interpreted as follows: 0.01–0.20 represent slight agreement, values of 0.21–0.40 represent fair agreement, those between 0.41–0.60 represent moderate agreement, values between 0.61–0.80 represent substantial agreement and values between 0.81–0.99 represent almost perfect agreement.³⁴ The intra-class correlation coefficient (ICC) is equivalent to the weighted kappa. ICC of less than 0.40 represents poor agreement, 0.40-0.59 represents fair agreement, 0.60-0.74 represents good agreement, and 0.75-1.00 represents excellent agreement.³⁵ For question 3, sensitivity and specificity of ultrasound in women with dense breasts and negative mammography were analysed using a Forest plot.

Section 3: Results


3.1 Key question 1 (reliability and concordance)


What are the reliability and concordance of available methods to measure mammographic breast density?

This relates to NSC criterion 4: "There should be a simple, safe, precise and validated screening test."

3.1.1 Description of the evidence

Figure 5 provides the PRISMA flow diagram for the reliability and concordance question. Our electronic search identified 2186 unique records, with no additional records identified through other sources. One hundred and twenty-three were examined as full texts. Ninety-two studies were excluded at full text stage; these are listed with the reason for exclusion in Appendix 3. This left 31 papers, reporting on 27 studies, which were included in the review.

3.1.2 Characteristics of included studies

Thirty-one papers, reporting on 27 studies, were included, which are summarised in Table 3 and Appendix 6 (Question 1 Tables a and b). Sample sizes ranged from 100 to 145,123 women. The studies were conducted in Australia,^{19,36} Canada,³⁷ India,³⁸ Israel,³⁹ the Netherlands,^{13,16,40} Norway,⁴¹ the Republic of Korea,⁴²⁻⁴⁵ Spain,^{15,46} Sweden,⁴⁷ the UK⁹ and the USA.^{12,14,17,18,22,48-52} The approach to density measurement, and the type of images used, varied between studies, with some studies using more than one method. Visual density measurement methods (percent density³⁷ or BIRADS classification edition 3,^{15,49} 4 ^{9,12,16,18,19,22,40-42,44,46,47,50,51} or 5,^{12,13,17,36,38,39,45,48,51,52} or version not stated¹⁴) were assessed in 25 studies.^{12-19,22,36-42,44-52} Semi-automated methods (Cumulus,^{9,14,15,43} ImageJ⁹ or DM-Scan¹⁵) using processed images were assessed in four studies.^{9,14,15,43} Fully automated methods (Densitas,³⁷ DM-Scan,¹⁵ LIBRA,¹⁷ Quantra,^{9,13,19,41} SXA⁹ or Volpara^{9,13,14,18,38,40,42,44,47,50,52}) were assessed in raw ("for processing") images,^{9,13,14,19,40,44,47,50,52} processed ("for presentation") images,^{15,17,37,42} mixed raw and processed images,¹⁸ and in three studies the image type was not stated.^{38,41,45} For the inter-rater reliability studies, the number of raters ranged from two^{16,37,38,43} to eighty-three,²² and for the test-retest studies, the time between ratings ranged from 1 day⁴⁶ to 30 months.⁴⁰ Concordance between measures was examined in 17 studies.^{9,13,15,17-19,37,38,40-42,44,45,47,50,52} Table 3: Methods, quality summary and limitations of included studies in question 1

Study	Population (n)	Interventions/ Comparator	Outcome	No. centres; country	Quality: QAREL criteria met/not met/ unclear/ not applicable out of total 11 domains	Sample repress- entative?	Readers repress- entative?	Time <2 years between tests?	Limitations
Abdolell 2013 ³⁷	Digital mammograms – no further information (n=138)	Densitas and visual percent density assessment	Inter-rater reliability; concordance between Densitas and visual assessment	1; Canada	3/0/7/1	Unclear	Yes	Unclear	The Pearson correlation coefficient (ρ) provides an inadequate, inflated, and overoptimistic measure of the level of agreement. This measure is not eligible for our review.
Alshafeiy 2017 ⁴⁸	Consecutive women undergoing screening with digital 2D mammography and tomosynthesis with a negative or benign (category 1 and 2) outcome (n=309); mean (SD) age 65.7 ± 11.4 years (range, 35–93 years).	BI-RADS 5 th edition from digital 2D images	Interreader agreement	1; USA	4/1/3/3	Νο	Yes	Yes	Relatively small number of readers from a single institution; results may differ in a larger study with more readers. No reference standard for breast density
Conant 2017 ¹⁷	Women with 2D bilateral MLO view synthetic digital mammogram (sDM) and standard dose "For	BIRADS 5 th edition; LIBRA algorithm in DM	Analysis of variance to determine whether the automated percent density estimates for DM	1; USA	1/7/0/3	No	No	N/A	A single area-based density estimation method using data from a single institution

	presentation" DM images available (3668 women with 7336 MLO images)		varied significantly according to the corresponding BIRADS breast density categories						
Destounis 2017 ¹⁸	Women diagnosed with cancer within the screening programme; mean (SD) age 62.1 (11) (n=595)	BIRADS 4 th edition, from previous normal mammogram vs. Volpara v1.4.2 from previous normal mammogram if raw images available or contralateral breast if raw images not available	Agreement between visual BIRADS and automated density grade	1; USA	3/1/5/2	No	Unclear	Yes	Interval cancers not differentiated between true interval, missed or mammographically occult (i.e. masked by dense tissue).
Ekpo 2016. ³⁶	Women who underwent digital breast tomosynthesis (DBT) investigation in 2015 and had a prior DM obtained in 2014 (n=234)	BI-RADS 5 th edition	BI-RADS 5 th edition inter-reader reproducibility	1; Australia	4/1/3/3	No	Yes	Yes	The proportion of BIRADS D density category in the dataset is higher than that of a typical population distribution, as women that have DBT subsequent to DM are more likely to have dense breast than fatty breasts. No agreed standard for BD assessment.
Ekpo 2016. ¹⁹	Females who underwent screening mammography between March and July 2014 (n=292)	Quantra 2.0 vs. BIRADS 4 th edition	Agreement between each radiologist and the majority report. Inter-reader agreement was	1; Australia	7/1/3/0	Unclear	Yes	Yes	The high level of agreement between the 6 radiologists may be due to the readers all working in the same practice; it is possible they

			assessed by comparing the first assessment of the radiologists in pairs. Intra-reader agreement was assessed by comparing the first and second readings of each radiologist.						would demonstrate considerable inter-reader variability with readers from different practice, limiting generalizability. Using the majority report in Phase 1 might have been a better reference standard. It is possible that the increased sensitivity of Quantra for BIRADS 1 and 2 in Phase 2 may be due to the small sample size compared with Phase 1 and the laboratory effect.
Eng 2014 ⁹ and Busana 2016 ⁵³	Cases: women with newly diagnosed breast cancer (mean (SD) age: 67.5 (12.7) years; not eligible as diagnostic population); controls: women who attended routine screening and were found to be breast cancer free (mean (SD) age: 59.5 (6.6) years) (n=1969)	BI-RADS 4 th edition; Cumulus v3; ImageJ-based method; Volpara v1.0; Quantra v1.3; single energy x-ray absorptiometry (SXA) method, v6.5	Inter- and intra- method and left-right comparisons among controls. Within-observer reliability of Cumulus. Between-observer reliability of Cumulus. LIBRA	2; UK	7/2/2/0	No	Yes	Yes	The study population was predominantly postmenopausal, thus, limiting the generalizability of the findings to premenopausal women. Response rates were low for healthy controls (51%). Processed images were missing for 15 % of the control participants due to a logistical error.
Eom 2017 ⁴⁵	Healthy women (n=1000)	BIRADS 5 th edition, Volpara version 1.5.12	Intra- and inter-reader agreement for BIRADS; concordance between Volpara and BIRADS	1; Republic of Korea	5/0/4/1	100% Asian	Unclear	Yes	All mammographic examinations performed in a single unit, with only one kind of automated quantitative measurement. Few readers all trained at the same institution. The automated volumetric

									measurement was used as a reference standard. The 5 th edition of BI-RADS no longer indicates percentage of dense tissue and emphasises changes in mammography sensitivity. No other gold standard.
Garrido- Estepa 2010 ⁴⁶	Women aged ≥4 years who attended screening in Barcelona, Burgos, Corunna (Coruña), Palma de Mallorca, Pamplona, Valencia and Zaragoza (n=1532)	BI-RADS 4 th edition	Intra-observer reliability	3; Spain	4/1/4/2	Unclear	No	Yes	1 reader only.
Gweon 2013 ⁴²	Full-field digital mammography (FFDM) examinations (n= 778)	BIRADS 4 th edition; Volpara version 1.5.1	Inter-rater reliability for BIRADS. Concordance between BIRADS and Volpara	1; South Korea	3/1/6/1	Unclear	Yes	Yes	No reference standard to evaluate breast density. Three radiologists in a single institution assigned BI-RADS density. It would be best to perform a larger study with more patients and radiologists from a variety of practice settings to validate the findings.
Harvey 2013 ⁴⁹	Women aged ≥ 40 years who underwent ≥2 digital screening mammography examinations <36 months apart; mean (SD) age 57.7 +/- 11.4 (range 40-89 or older) years (n=87066)	BIRADS 3 rd edition (prior to 2003) or 4 th edition (released in 2003)	BIRADS test-retest agreement	5; USA	4/0/4/3	Yes	Yes	Yes	Included density interpretations determined on both 3 rd and 4 th editions of BIRADS lexicon

Holland 2016 ⁴⁰	Women aged 50-75 with consecutive exam pairs; mean (SD) age 58.8 ± 6.7 years (n=500)	Volpara v 1.5.0 and BIRADS 4 th edition	Inter-exam agreement was calculated with Cohen's weighted kappa. Intraclass correlation coefficients (ICCs) were calculated to examine the interexam agreement of the four classes categorisation.	Not stated but multiple; The Netherlands	6/1/3/1	Yes	Yes	No	The readers had a minimum of only 1 week between readings (although 30 months between prior and current mammograms). Variability may increase with interval, decreasing agreement over time. In practice agreement might be lower because the screening interval is much longer.
Irshad 2016 ¹²	Consecutive women with digital mammograms from screening mammography database; mean age 47 (range 36-82) years (n=104)	BIRADS 4 th edition and BIRADS 5 th edition	Each radiologist evaluated breast density of 104 mammograms four times: twice using the 4 th edition BI-RADS criteria and twice using the 5 th edition. Intra-reader and interreader agreements for 4 th and 5 th edition criteria.	1; USA	6/0/4/1	Unclear	Yes	Yes	Readers focused all their attention on breast density, making density the most important finding on the mammograms, which is not the case in real practice in which density is usually a secondary focus of attention.
Irshad 2017 ⁵¹	Digital screening mammograms read by the 5 readers at the authors' institution who had read mammograms under 4 th (n= 19066) or 5 th (n= 16907) edition BIRADS guidelines	BIRADS 4 th edition and BIRADS 5 th edition	Intraclass correlation coefficient (ICC) within each dataset.	1; USA	3/1/6/1	Yes	Yes	Yes	Single institution; practice patterns of the readers might have been more similar to one another than those seen across various institutions and practices
Jeffers 2017 ¹⁴	Cases: women who had screening mammogram and subsequently	Cumulus 6 (version 4.0); Volpara (version not	Correlation between methods	1; USA	2/1/6/2	Unclear	Yes	Unclear	The available sample size limited the ability to detect subtle differences in

	diagnosed with breast	stated) and BI-							discrimination among the
	-								-
	cancer; pre-diagnostic	RADS (version not							density assessment
	mammogram ≥1 year	stated)							methods. BI-RADS density
	before diagnosis; image								assessment by a single
	of the noncancerous								reader. Cumulus
	contralateral breast								assessments by a single
	(n=125; 58.4% >50								reader. Using Cumulus
	years). Controls: women								requires the reader to
	without a history of								undergo specialised
	breast cancer who had								training and attain high
	screening mammogram;								levels of intrareader
	breast cancer–free								reproducibility with test
	status confirmed with at								images before reading
	least 10 years of follow-								study images; this and the
	up for women aged ≥50								time required to perform
	years or ≥ 3 screening								Cumulus measurements
	mammograms negative								made it impractical to have
	for cancer (BI-RADS 1 or								more than one Cumulus
	2) for women < 50 years								reader for this study;
	(n=274; 58.8% >50								having multiple readers
	years).								could have strengthened
	yearsj.								the results.
Kara 201 (43		Currente a luce rei e re	Inter and inter reader	1. Cauth	4/2/4/0	Ne	Vaa	Vaa	
Kang 2016 ⁴³	Craniocaudal (CC)	Cumulus (version	Intra- and inter-reader	1; South	4/3/4/0	No	Yes	Yes	The authors chose readers
	mammograms of	4.0)	reliability with	Korea					with sufficient experience
	subjects who were		Cumulus						in mammographic reading
	involved in a breast								and breast density
	cancer screening								estimation, the small
	program and found to								number of readers limits
	have normal breasts;								generalisability of findings.
	mean 50.2 years; range,								They used only CC
	28–79 years (n=100)								mammograms. Studies
									have shown better
									associations between
									percent density and breast
									cancer on CC images than

									on MLO images. Images from one model of equipment. Because each type of mammographic system has different imaging characteristics and post-processing options, results cannot be directly applied to mammograms obtained with other types of equipment.
Kerlikowske 2017 ⁵²	Digital screening examinations of women with incident invasive breast cancers and matched control subjects without prior breast cancer. (n=5406)	BIRADS 5 th edition, Volpara version 1.5.0	Correlation between BIRADS categories and Volpara continuous dense breast volume, divided into quartiles	Not stated; USA	5/1/4/1	Yes	Yes	Yes	In studies for interrater and intrarater reliability of the BI-RADS categories, investigators have reported moderate to substantial agreement; misclassification of BI-RADS categories may have influenced results (under- or overestimation of associations). Population predominantly white and Asian; studies should be repeated with Black and Hispanic women to ensure generalisability of results across racial/ethnic groups.
Llobet 2014, ¹⁵ Martinez Gomez 2014 ⁵⁴ and Pollan 2013 ⁵⁵	Mammograms from women participants at two screening centers equipped with full-field digital mammography machines; range 45-69 years (n=655)	BIRADS 3 rd edition, DM-Scan, Cumulus	Inter- and intra-rater concordance with DM- Scan and BIRADS. Agreement between visual scale and Cumulus versus DM- Scan, with	2; Spain	5/0/6/0	Yes	Yes	Yes	Brightness correction could introduce a significant error in MD measurement. A hard classification was used, assuming that each pixel can only belong to one of the two possible

			Cumulus/DM-Scan having Concordance Correlation Coefficient (CCC) and Bland- Altman plots.						classes, rather than a soft or probabilistic classification, in which each pixel has a probability of belonging to each class. The authors did not estimate the extra time necessary to add the estimation of breast density to daily routine. DM-Scan and Cumulus were used on processed mammograms that depend on the manufacturers; the authors did not have access to raw (unprocessed) images because Spanish screening centres discard them due to storage constraints. Reliability of DM-Scan and Cumulus not compared.
Lobbes 2012 ¹⁶	Women with digital mammograms; mean 51.6 (range 23.9-91.2) years (n=200)	BIRADS 4 th edition, QWIN semi- automated thresholding	Inter-reader reliability of BIRADS 4 th edition; QWIN ICC left versus right breast	1; The Netherlands	3/0/6/2	Unclear	Unclear	Yes	Included relatively small numbers of dense breasts (BIRADS 3 or 4). A true gold standard for the assessment of breast density is lacking.
Mazor 2016 ³⁹	Patients who had undergone consecutive mammography between January and March 2014 were randomly chosen; age not stated (n=503)	BIRADS 5 th edition	Inter-observer agreement between technologists and radiologists. Intra- and inter-observer agreements within the group of radiologists	1; Israel	8/0/2/1	Unclear	Yes	Yes	The reference range for breast density used in this study stemmed from the subjective measurements performed by the radiologists, as methods of objective breast density

			and the inter-observer agreement within the group of technologists.						measurement such as automated breast density measuring algorithms are unavailable in the authors' institution.
Osteras 2016 ⁴¹ and Osteras 2016 ⁵⁶	Women with digital mammograms; mean (SD) age 59.3 (5.6) years; range 50-70 years (n=537)	BIRADS 4 th edition, Quantra version 2.0 (areometric density, volumetric density, BIRADS- like categories)	Inter-observer variability for each radiologist versus the median BIRADS score (unweighted kappa and with quadratic weights)	1; Norway	4/0/7/0	Unclear	Yes	Yes	The radiologists had a range of experience from 1- 34 years, but more- and less-experienced readers equally influence the median score. Radiologists did not use BIRADS in their daily practice but the three categories used in the Norwegian breast cancer screening program. They trained in the use of BIRADS before the study began; the training could reduce the variation in their assessments. This is a single-centre study, using the BIRADS 4 th edition, but in the future the 5 th edition will be used.
Raza 2016 ⁵⁰	Digital bilateral screening mammograms; age not stated (n=200)	BIRADS 4 th edition; Volpara version not stated	Inter-rater reliability of radiologists using BIRADS before and after training, compared with a) senior breast imagers (leads truth [LT]) and b) Volpara (quantitative truth [QT]).	1; USA	4/1/4/2	No	Yes	Unclear	There is no gold standard for breast density assessment. Today's software is not yet able to account for the complexity of breast tissue, as a trained radiologist can.

Sartor 2016 ⁴⁷	Digital mammograms with available raw data from the Malmo Breast Tomosynthesis Screening Trial (MBTST), a prospective study comparing MLO DBT alone vs. CC and MLO DM; mean age 58 (range 40-76) years (n=8426).	BIRADS 4 th edition and Volpara (version 1.5.11)	Inter-observer variability for examinations with two BIRADS scores. Kappa values for comparison between Volpara density grades (VDG; categorical variable with four groups) and BIRADS scores calculated using separate kappa coefficients for each reader vs. Volpara, then results combined in a meta-analysis, weighting them using the standard error for each kappa, rendering	1; Sweden	3/0/8/0	Unclear	Yes	Unclear	Initial trial participation rate was 71.1%; further women did not have both BIRADS and Volpara readings, so overall around 67% participation.
Seo 2013 ⁴⁴	Healthy women received four-view screening mammograms whose mammograms were considered to be negative (BI-RADS category 1); mean 49.1 (range 35–72) years (n=193)	BIRADS 4 th edition and Volpara (version 1.4)	a pooled kappa. Intra- and inter- observer agreement for the BI-RADS density category; concordance	1; Republic of Korea	5/1/5/0	No	Yes	Yes	There is a lack of reference- standard regarding breast density. Only a small number of radiologists read the BI-RADS breast categories. <30% of eligible women consented.
Singh 2016 ³⁸	Asymptomatic females >35 years of age; mean (SD) 48.8 (7.07), range 36-76 years (n= 476)	BIRADS 5 th edition and Volpara (version 1.4.5)	Interobserver agreement using BIRADS; correlation between BIRADS and volumetric breast density	1; India	4/1/3/3	Yes	Yes	Yes	Small single-institution study; examinations were interpreted by only 2 radiologists. No reference standard for breast density. Factors such as BMI were

									not investigated. Only one mammography machine was used so results cannot be generalised to all types of machines.
Sprague 2016 ²²	Screening mammography; mean (SD) 57.9 (10.8), range 40 to 89 years (n= 145,123)	BI-RADS 4 th edition	Inter-rater variation between radiologists; test-retest reliability when interpreted by the same or a different radiologist	30; USA	4/1/6/0	Yes	Yes	Yes	Study limited to assessments by radiologists practicing in the clinical networks of the 3 PROSPR breast cancer screening research centers. Although these included a large number of academic and community practice breast imaging facilities in 4 states, the degree of variation in breast density assessment may differ in other clinical settings around the country, and at radiology practices serving a different demographic mix of patients. Quantitative density measures were not available for comparison with the radiologist's subjective assessment. Results likely reflect not only variation in radiologist interpretation of images but also the variation in the mammography machines and software used to produce digital

									mammographic images that is routinely present across and within facilities over time in clinical practice. Over 15% of women were excluded.
van der Waal 2015 ¹³	Screening mammograms; median age 59 (IQR: 54–64) years (n=992)	BI-RADS 5 th edition; Quantra (version 1.3); Volpara (version 1.5.11)	Intra- and inter-rater reliability of the BI- RADS density scores; overall proportions of agreement (absolute agreement); intraclass correlation coefficients (ICC) between volumetric breast density estimates and BI-RADS classification	1; The Netherlands	6/0/5/0	Yes	Yes	Unclear	The authors did not have information on breast cancer risk, which would ultimately be needed to validate both breast density measures and potentially implement them in a breast cancer screening setting if they are to be used for risk stratification.

Methodological quality of included studies

We found no multi-centre studies that included a representative samples of women and raters, with investigations repeated within the 2-year time-frame. Figure 6 shows the methodological quality appraisal of the included studies. All applied the test criteria appropriately, and most had representative raters, an appropriate time interval between tests and appropriate statistical tests. Blinding was often unclear, and several studies had concerns over statistical measures and the representativeness of the sample. The mean number of criteria met (out of 11) was 4.33 (39%) with a range of 1¹⁷ to 8.³⁹ The mean number of criteria not met (domains of concern) was 0.96 (0.9%) with a range of O^{12,13,15,16,37,39,41,45,47,49} to 7.¹⁷ The domain which was the most frequent cause of concern (8/27 studies; 30%) was the representativeness of the sample, due to including only women with negative/benign screening results, or only those who went on to have cancer, or over-sampling women with dense breasts. Other domains of concern were statistical measures (identified in 6/27 studies; 22%) and varying the order of examinations (identified in 4/27 studies; 15%). Another issue was unclear or incomplete reporting that prevented an assessment of methodological quality, especially for the blinding domains, varying the order of examinations and the representativeness of the sample. The mean number of domains which were unclear was 4.44 (40%) with a range of 0^{17} to 8.47 The mean number of domains which were not applicable was 1.22 (11%) with a range of $0^{9,13,15,19,22,41,43,44,47}$ to $3^{17,36,38,48,49}$

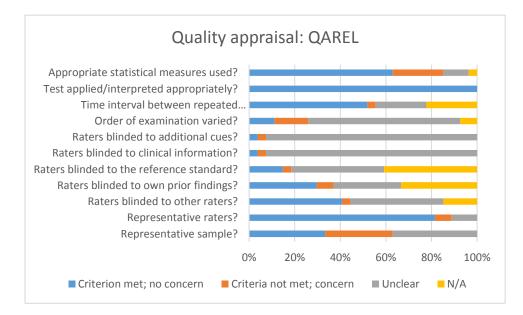


Figure 6. Quality appraisal of included studies for question 1 according to QAREL criteria

Beyond the methodological quality of studies, there are concerns about the applicability to the UK screening population due to the wide age ranges of included women^{12,16,39,43} and the different ethnic groups of the included women.⁴²⁻⁴⁵

3.1.3 Analysis of the evidence

Outcomes reported included intra- and inter-observer reliability of density measurement methods and the concordance between methods, measured using the kappa statistic. While a kappa of 1 represents a perfect agreement, kappa values of 0 or below represent agreements that occur by chance, or that are poor. Kappa values of 0.01–0.20 represent slight agreement, values of 0.21–0.40 represent fair agreement, those between 0.41–0.60 represent moderate agreement, values between 0.61–0.80 represent substantial agreement and values between 0.81–0.99 represent almost perfect agreement.³⁴ The intra-class correlation coefficient (ICC) is equivalent to the weighted kappa. ICC of less than 0.40 represents poor agreement, 0.40-0.59 represents fair agreement, 0.60-0.74 represents good agreement, and 0.75-1.00 represents excellent agreement.³⁵

Six studies assessed reliability and concordance using inappropriate statistical tests: Pearson's correlation coefficients, Spearman's rank coefficients or t-tests.^{9,17,38,42,44,52} These are not appropriate measures of reliability or agreement as they either assess linear relationships without detect systematic error (Pearson's, Spearman's) or detect systematic differences but are not sensitive to random difference from the mean (t-test).⁵⁷ Therefore, these analyses have been excluded from our results. Appropriate kappa statistics were calculated where possible, if not already presented in the publications.

Analyses examined the kappas for the four density categories (e.g. BIRADS I, II, III, IV) or collapsed into two categories (i.e. dense vs. non-dense).

Test-retest reliability

Visual methods

Overall, test-retest reliability for the four BIRADS categories was moderate to almost-perfect for visual assessment measures of mammographic breast density. The percentage agreement between raters on BIRADS versions 3, 4, and 5 was reported in nine studies, and kappa ranged from 0.54 to 0.95. For BIRADS 3rd or 4th edition, one study showed moderate test-retest reliability ($\kappa = 0.54$; not stated to be weighted) on the four-category scale.⁴⁹ We calculated the weighted linear kappa as 0.638 (95% CI 0.634, 0.642) indicating moderate agreement. For BI-RADS 4th edition, one study¹⁹ reported weighted kappas (weighting not stated) for three radiologists (0.86, 0.87 and 0.88) indicating almost perfect agreement on the four-category scale and weighted kappas on the two-category scale of 0.88, 0.90 and 0.91. One study⁴⁶ reported a quadratic weighted kappa of 0.90 for one radiologist indicating almost perfect agreement on the four-category scale and 0.82 on the two-category scale. One study⁴⁰ reported weighted kappa values (weighting not stated) for three radiologists (0.76, 0.77 and 0.79) indicating substantial agreement and a PhD student with a medical degree and two years of experience with breast imaging (0.82) indicating almost perfect agreement on the four-category scale. One study¹² reported individual intrareader agreements (quadratic weighted kappa) in five radiologists ranged from 0.78 to 0.92;

four readers scored >0.8 indicating almost perfect agreement and one 0.78 indicating substantial agreement on the four-category scale. One study²² involved 83 radiologists and we calculated the linear weighted kappa of 0.760 (95% CI 0.7507, 0.7695) indicating substantial agreement and quadratic weighted kappa of 0.8338 (95% CI 0.8172, 0.8504) indicating almost perfect agreement for the two-category scale.

For the most recent 5th edition of BI-RADS, test-retest reliability was moderate to almost-perfect in 3 studies ($\kappa = 0.74-0.95$).^{12,13,45} In one study, two breast-imaging experts (kappas 0.84, 0.87), two general radiologists (kappas 0.86, 0.95), and one student (kappa 0.86) had almost perfect agreement, while one student's agreement was substantial (0.74) on the four-category scale.⁴⁵ Intra-reader agreements on the two-category scale were almost perfect or substantial (k=0.76-0.95) among the breast-imaging experts (0.85, 0.88), general radiologists (0.88, 0.95), and students (0.76, 0.90). One study¹² reported individual intrareader agreements (quadratic weighted kappa) in five radiologists ranged from individual intrareader agreement and one 0.74 indicating substantial agreement on the four-category scale. One study¹³ reported quadratic weighted kappas for three radiologists (0.82, 0.85 and 0.87) on the four-category scale.

Semi-automated methods

The semi-automated DM-Scan was assessed in one study and test-retest reliability was almostperfect in three radiologists (ICC 0.900, 0.935 and 0.938; mean of the three readers: 0.924) on the four-category scale.¹⁵

Fully-automated methods

One study assessed the fully-automated Volpara using serial mammograms over time and test-retest reliability was almost-perfect (weighted κ = 0.85; weighting not stated) on the four-category scale and 0.80 on the two-category scale.⁴⁰

Inter-rater reliability

Visual methods

Overall, inter-rater reliability was fair to almost perfect for visual methods. The agreement between raters on visual percent density was assessed in one study comparing four readers (ICC [equivalent to a quadratically weighted kappa] = 0.884).³⁷ The BI-RADS 4th edition was assessed in ten studies. One study¹⁹ reported a weighted kappa (weighting not stated) between pairs of radiologists of 0.66, 0.73 and 0.75 on the four-category scale and 0.77, 0.83 and 0.89 on the two-grade scale. One study⁴² reported the overall weighted kappa (weighting not stated) of the three radiologists' estimates of BI-RADS density categories showed moderate agreement ($\kappa = 0.48$). One study⁴⁰ reported weighted kappa values (weighting not stated) between 0.78 and 0.83 for the four-category scale and between 0.73 and 0.78 on the two-category scale between three radiologists and a PhD student with a medical degree and two years of experience with breast imaging. One study¹² reported an overall interreader agreement (quadratic weighted kappa) of 0.65, with quadratic weighted kappa between

pairs of radiologists of 0.67, 0.71, 0.74, 0.75, 0.77, 0.80, 0.82, 0.84, 0.86 and 0.87. One study⁵¹ reported an ICC between five radiologists of 0.940. One study¹⁵ reported an average quadratic weighted kappa of 0.823 between three radiologists. One study⁴¹ reported that four of the five radiologists had almost perfect agreement with the median score using quadratic weights (0.849, 0.875, 0.879, 0.934) and the fifth had substantial agreement (0.763). One study⁴⁷ reported a linear weighted kappa of 0.77 between five radiologists. One study compared a breast radiologist with 18 years' experience versus a senior resident in radiology with 2 years' experience (overall linear weighted $\kappa = 0.521$ [reported by study authors] indicating moderate agreement; quadratic weighted $\kappa = 0.65$, 95% CI 0.53, 0.77 [calculated by us] indicating substantial agreement).¹⁶ Results from the largest multi-centre real-world setting study²² showed that:

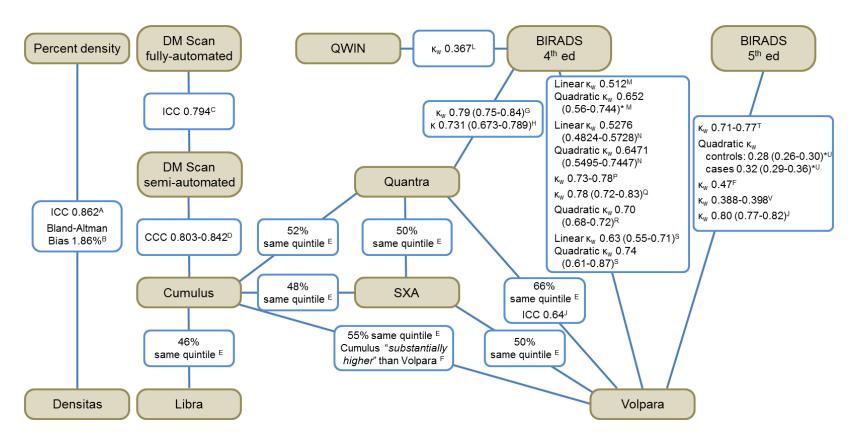
- Among women with consecutive mammograms interpreted by different radiologists (n = 34 271 women), at a median interval of 1.1 years (IQR 1.0 to 1.3 years), 27.0% of women with dense breasts at the first examination were classified as nondense breasts at the second examination, and 11.4% of women with nondense breasts at the first examination were classified as dense breasts at the second examination. Differences between radiologists persisted after adjustment for age, race and BMI.
- The median percentage of mammograms rated as showing dense breasts was 38.7% (IQR 28.9% to 50.9%; range 6.3% to 84.5%). A quarter of radiologists rated <28.9% of their patients' mammograms as showing dense breasts, whereas the highest 25% of radiologists rated at least 50.9% of their patients' mammograms as showing dense breasts.
- There was substantial variation across radiologists in the percentage of mammograms rated as showing dense breasts within nearly all age and BMI categories.

Seven studies assessed the BIRADS 5th edition. One study⁴⁸ reported weighted kappas (weighting not stated) between pairs of readers of 0.56, 0.59; and 0.68 on the four-category scale and 0.67, 0.67 and 0.82 on the two-category scale. One study³⁶ reported unweighted kappas between pairs of readers of 0.38, 0.58 and 0.68 on the four-category scale and 0.70, 0.81 and 0.85 on the twocategory scale. One study¹² reported an overall interreader agreement (quadratic weighted kappa) of 0.57, with quadratic weighted kappa between pairs of radiologists of 0.61, 0.72, 0.74, 0.75, 0.76, 0.77, 0.79, 0.85, 0.85 and 0.90. One study³⁸ reported almost perfect agreement (weighted κ = 0.895; weighting not stated) for two blinded radiologists. One study van der Waal 2015¹³ reported a quadratic weighted kappa of the inter-rater comparisons of three radiologists ranged from 0.80 to 0.84 for the four-category scale and 0.89 to 0.90 for the two-category scale. One study compared the agreement between breast-imaging experts with more than five years of experience in reading mammograms versus two general radiologists with fewer years of experience in reading mammograms (weighted κ = 0.67 on the four-category scale; 0.78 on the two-category scale; weighting not stated), even though for inter-reader analysis, the reader with better intra-reader agreement was chosen from each group.⁴⁵ One study³⁹ compared ten mammography technologists (weighted kappa 0.62 within this group on both the four-category scale and the two-category scale) and seven breast radiologists (weighted kappa 0.69 within this group on the four-category scale and

0.77 on the two-category scale). Only a fair level of agreement was noted between the technologists and the radiologists (weighted kappa 0.38 between groups on the four-category scale and 0.45 on the two-category scale).³⁹

Semi-automated methods

Two studies assessed Cumulus using radiologists, breast surgeons or the reader profession was not stated ($\kappa = 0.83-0.90$).^{9,43} One study⁹ reported the ICC 0.89, 0.90 and 0.83 for raw ("for processing"), processed ("for presentation") and analogue-like images, respectively. One study⁴³ reported a concordance correlation coefficient (CCC) of 0.86-0.89 between two radiologists board certified in breast imaging and one breast surgeon. One study assessed the semi-automated DM-Scan used by radiologists and reported ICC between pairs of readers of 0.916, 0.922 and 0.928.¹⁵


Fully-automated methods

Inter-rater reliability is not applicable for fully-automated measures as they do not require human raters.

Concordance

Concordance between methods was assessed in 17 studies and agreement varied from fair to substantial: three studies reported kappa between 0.21 and 0.40 (fair agreement); one study between 0.41 and 0.60 (moderate agreement); twelve studies between 0.61 and 0.80 (substantial agreement) and two studies between 0.81 and 0.99 (almost perfect agreement) (see Figure 7). One study compared the quintiles of density defined by different methods; the highest concordance between pairs of methods was for Quantra and Volpara, but even for this pair (but fully automated volumetric methods), only 66% of women were assigned to the same quintile.⁹

Figure 7. Diagram of concordance (excluding untrained students)

* Kappa calculated

CCC = Concordance Correlation Coefficient ICC = Intraclass correlation coefficient; κ = Unweighted Kappa; κ_w = Weighted Kappa

A: Abdolell 2013 B: [<i>limits of agreement -20.38 to +24.1, largest outlier not reported</i>] C: Llobet 2014 D: Pollan 2013 E: Eng 2014 & Busana 2016 F: Jeffers 2017	G: Ekpo 2016 [<i>Quantra</i>] H: Osteras 2016 [<i>Classification</i>] J: van der Waal 2015 L: Lobbes 2012. [<i>Experienced reader</i>] M: Destounis 2017 N: Gweon 2013 P: Holland 2016	Q: Raza 2016 R: Sartor 2016 S: Seo 2013 T: Eom 2017 U: Kerlikowske 2017 V: Singh 2016
---	--	--

3.1.4 Discussion

Study evidence

The likelihood of a woman being told she has dense breasts varies substantially within and between readers for visual methods (see Table 4). Semi-automated and automated methods are more consistently reliable than visual methods. However, although semi-automated methods have been shown to have high between- and within-reader reliability in research settings, in which efforts are made to train the readers and ensure standardisation of procedures, similar high inter-reader reliability values may not be achieved in clinical practice.

Table 4. Reliability and validity measures (kappa, ICC) for different types of density assessment methods (NB kappa values between 0.81–0.99 represent almost perfect agreement).

	Visual	Semi-automated	Automated
Test-retest	0.54-0.95	0.92	0.85
Inter-rater	0.38-0.96	0.83-0.92	

Note that a difficulty with immediate test-retest assessment in mammography is that because of the radiation dose associated with mammography, a good reason is required to repeat the mammograms, either in the same compression, or in a different one; test-retest over time is a proxy measure.

Concordance between methods also varied (see Table 5) and is not generally high, as methods define density in different ways and there is no gold standard applicable to all breast density measurements. Even automated methods such as Volpara and Quantra clearly differed from each other, i.e. methods are not interchangeable.

Table 5. Concordance between methods

	Semi-automated	Automated
Visual	-	"Significantly different" to almost perfect agreement; 0.28-0.86
Semi-automated	Almost perfect agreement: 0.80- 0.84	"Substantially different" to substantial agreement; 0.79; 46-52% assigned to the same quintiles
Automated	-	Substantial agreement: 0.64; 50-66% assigned to the same quintiles

Study quality

High quality studies would have low risk of bias and should also be generalisable to our population in terms of the women (a large number of representative women from a general screening population) and the readers (a large number of readers within a multi-centre study of general screening, rather than single centre studies or readers specially trained for a research study). None of the studies scored above 8/11 for domains of the quality assessment tool that were met (no concern), and even those studies with most of the domains met had domains not met or unclear.

Study applicability

Although most studies included a sample that was representative of a UK screening population, there are concerns about the applicability of some of the studies to the UK screening population due to the wide age ranges of included women^{12,16,39,43} and the different ethnic groups studied, for example in the studies conducted in the Republic of Korea.⁴²⁻⁴⁵

Consistency

The studies consistently showed that repeatability of density measurements was higher for the same reader than for different readers using the same measurement method, and lower for concordance studies comparing different measurement methods.

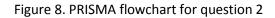
3.1.5 Summary

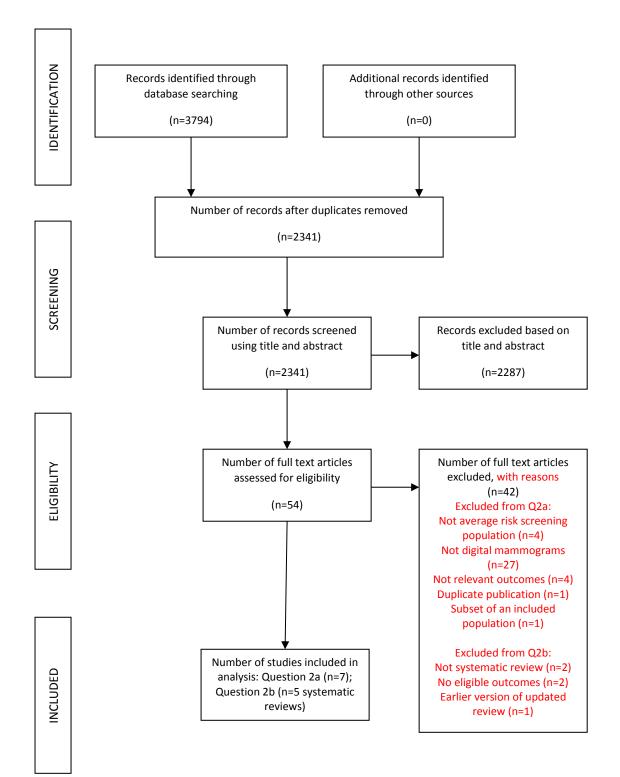
This question addressed NSC criterion 4: There should be a simple, safe, precise and validated screening test. **Not met.**

It is difficult to validate the density methods when there is no gold standard against which to compare breast density measurements, concordance between methods is variable. It is clear that even automated methods are not interchangeable.

3.2 Key questions 2a and 2b

2a: Is mammographic breast density a risk factor for cancers being missed during screening (masking on mammograms/false negatives/interval cancers)?


2b: Is mammographic breast density a risk factor for developing breast cancer?


These relate to NSC criterion 1:

"There should be robust evidence about the association between the risk or disease marker and serious or treatable disease."

3.2.1 Description of the evidence

The searches identified 3794 studies through electronic databases; 261 records were examined at title and abstract stage, of which 54 were examined as full texts. Seven studies were subsequently included for question 2a, and five studies for question 2b. Details of the excluded papers are provided in Appendix 3. The numbers of papers at each stage of the search are shown in the PRISMA flow chart below (see Figure 8).

3.2.2 Question 2a

Characteristics of included studies

Seven studies were included (see Table 6 and Appendix 6). Sample sizes ranged from 60⁵⁸ to 405,191⁵⁹. The studies were conducted in Australia,⁵⁸ Belgium,⁶⁰ the Netherlands^{7,61} and the USA.^{18,59,62} Visual density methods (BIRADS) were used in six studies;^{18,58-62} an automated method (Volpara) was used in three studies.^{7,18,61}

Table 6. Characteristics of included studies

Study	Population (n)	Interventions/	Outcome	No. centres;	Limitations
		Comparator		country	
Destounis 2017 ¹⁸	Women aged >40 years (mean 62.1; SD 11) with histopathologically confirmed breast cancer (n=614)	Mammographic density using BIRADS 4 th edition or Volpara	Comparison between screen- detected and interval cancers	1; USA	Retrospective study; BMI not available and so not included in multivariate analysis. Interval cancers not differentiated between true interval, missed or mammographically occult (i.e. masked by dense tissue). Unable to analyse the relation between masking risk and location and distribution of density within the breast. Large proportion of people missing from analysis. Around 13.6% aged <50 years and 23.6% >70 years. Around 8.5% <47 years and 16.1% >73 years.
Holland 2017 ⁶¹	Cases: Women with interval cancers within 12 months after the examination. The last available screening examination before cancer diagnosis is used in this study. Mean age 57.7 years. Controls: For each patient with an interval cancer, 10 participants were chosen as controls. The control participants needed to have had a mammographic examination in the same month in which the last screening examination of the	Percent dense volume using Volpara or percent density using BIRADS 5 th edition	To measure to what extent the methods can identify women at high masking risk, the mammograms were divided in a high and low masking risk group by thresholding the risk measure. Then, the sensitivity of the masking measures was computed as the number of interval cancers in the high-risk group divided by the total number of interval cancers. The false positive rate is calculated as the percentage of normal controls	1; The Netherlands	Given that the exact cancer location was unknown and that diagnostic mammograms were not available, it was not possible to review the interval cancers and to confirm that masking is the cause for a cancer diagnosis outside the screening program. CC images not available for all exams. BIRADS density assessments of only one radiologist. Many studies found inter- and intra- reader variability in breast density assessment using BI-RADS.

	interval cancer patient was performed. To be eligible as control, the women should not have been recalled on the basis of this mammographic examination and they should not have been diagnosed with breast cancer within 2 years after this examination. Controls without a density map, due to failure of the computation, were replaced. (n=111 cases + 1110 controls). Mean age 59.2 years.		selected as at high masking risk at the same threshold. In the context of risk stratification for supplemental screening, the proportion of controls selected as at high masking risk can be seen as supplemental screening rate and the proportion of interval cancers gives an estimate about the cancers that might be detectable with additional imaging at that supplemental screening rate.		Therefore, to make a definitive comparison between the automated methods and radiologists assessments, an extensive reader study should be conducted with multiple readers.
Kerlikowske 2015 ⁶²	Women aged 40-74 years who did not have a history of breast cancer or breast implants and had complete information on demographic and breast health history information (n=365,426)	Mammographic density using BIRADS	Interval cancer rate and false positive rate by breast density	Not stated; USA	The cut-points used for defining low performance were developed for identifying minimally acceptable performance levels for screening mammography interpretation for invasive and DCIS outcomes combined; the authors state that they do not know if these performance cut-points are related to long-term outcomes such as breast cancer mortality. For some subgroups with an average interval cancer rate <1/1,000 mammograms, they cannot rule out a higher interval cancer rate because the upper 95% confidence limit exceeds one. A 24-month interval was not evaluated since women may return early for screening and/or have

					mammograms outside the BCSC. Participation rate not stated. 19.1% aged 40-49 years and 13.4% aged 70-74 years
Nelson 2016 ⁵⁹	Women aged 40 to 89 years who had routine screening with digital mammography (n=405,191)	Mammographic density using BIRADS 4 th edition	Rates of false-positive and false- negative mammography results and recommendations for additional imaging and biopsies from a single screening round	5 registries; USA	The BCSC data reflect opportunistic screening in a fluctuating population of women in the USA whose information was collected by the participating registries. Findings may not be applicable to other populations. Restrictions of registry data with pre-defined data elements and the inherent biases of observational data. Some outcomes, such as the effectiveness and harms of different screening intervals, would be more accurately determined by comparing outcomes between women who were randomly assigned to comparison groups. 16.3% had missing data for breast density. 28.1% aged 40–49 years, 12.4% aged 70–79 years and 4.6% aged 80–89 years.
Rawashdeh 2013 ⁵⁸	A single-image bank containing 60 digital cases containing 20 positive (biopsy-proven) cases with a single focus of cancer in 16 cases and multicentric cancer in 4 cases (resulting in a total of 24 cancers)	BIRADS 3 rd edition	Detectability of lesions by breast density in a reader study	Not stated; Australia	The same radiologist who chose the images was responsible for assessing breast density; <100 images

	(n=60). Mean 54 years (range 47 to 78 years)				
Timmermans 2017 ⁶⁰	Women aged between 50 and 69 years (n=351,532)	BI-RADS 4 th edition	Cancer detection rate, interval cancer rate, third readings and correlated false-positives by breast density category	Not stated; Belgium	Subdivision of ICs in true, missed and minimal signs was not performed. A low statistical power hampered reaching statistical significance in differences between modalities for the BI-RADS IV class data.
Wanders 2017 ⁷	Women aged 50–75 years participating in a biennial screening program (n=111,898 examinations belonging to 53,239 women)	Volpara	Interval cancers by density	1; The Netherlands	The MLO view was the standard view for the subsequent screening rounds and CC views were only taken in addition to MLO during the first screening round or by indication during subsequent rounds. As a result, breast density was determined based on only MLO views for some examinations and on both MLO and CC views for others. Volpara's volumetric percent density measured on CC views tends to be somewhat higher than on MLO views. As CC views are more often performed among women with dense breasts and women with a suspicious region on their MLO view, breast density might be somewhat artificially elevated for these women. Screening sensitivity is presumably higher when both MLO and CC views are available versus MLO views only. Therefore, standardly taking both MLO and CC

		views would lead to higher
		sensitivity, particularly in women
		with fatty breasts as they are the
		ones who most often receive MLO
		views only. This would lead to larger
		differences in screening
		performance across breast density
		categories.

Methodological quality of included studies

The quality of the included studies is shown in Figure 9. Key quality issues included interval cancers not differentiated between true interval, missed or mammographically occult (i.e. masked by dense tissue);⁵⁰ many women missing from the analysis;¹⁸ missing data for breast density;⁵⁹ and lack of detail on the included population.⁵⁸ Most participating women were aged between 47 and 73 years, although in several studies^{18,59,62} over 10% of women fell outside this age range.

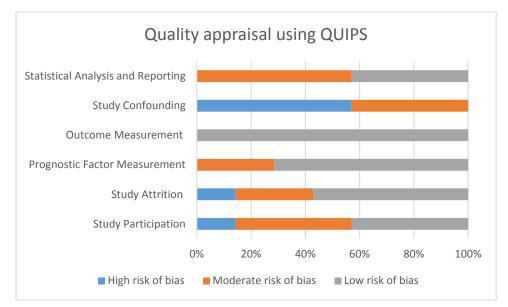


Figure 9. Quality appraisal for included studies in question 2a according to QUIPS

Analysis of the evidence

Visual methods

Destounis 2017¹⁸ analysed 614 women aged >40 years (mean 62.1; SD 11) with histopathologically confirmed breast cancer, comparing those with screen-detected and those with interval cancers in 1 centre in the USA. Around 13.6% aged <50 years and 23.6% >70 years. The mammographic sensitivity was reported by BIRADS density and was lower for women with extremely dense breasts: fatty replaced: 82%; scattered fibroglandular: 90%; heterogeneously dense: 84%; extremely dense: 66%; $R^2 = 0.463$. In univariate analysis, density was associated with the risk of diagnosis of interval cancer versus screen-detected cancer: BIRADS category 3 vs. 1 or 2: OR 1.91 (1.07-3.40), p=0.028; BIRADS category 4 vs. 1 or 2: OR 5.00 (2.43-10.33), p<0.001. In age-adjusted analysis, BIRADS 3 vs. 1 or 2: the OR was 1.60 (0.89-2.89), and for BIRADS 4 vs. 1 or 2, the OR was 3.82 (1.82-8.06), p<0.001.

Holland 2017⁶¹ analysed 111 women with interval cancers diagnosed within 12 months of screening (the last available screening examination before cancer diagnosis was used in this study) versus 1110 control women (who had a mammogram in the same month in which the last screening examination of the case was performed and were not recalled or diagnosed with breast cancer within 2 years after this examination). Percent dense volume using Volpara (see fully-automated section below) or percent density using BIRADS 5th edition were used, in 1 centre in The Netherlands. With BI-RADS, 427/1110 = 38.5% (95% CI 35.7–41.3) of the controls (no cancer) were at increased masking risk, 66

compared with 70/111 = 63.0% (95% CI 53.5–72.0) of the women developing interval cancers, giving a RR of dense breasts among those with interval cancer of 63/38.5 = 1.64 (calculated by us).

Kerlikowske 2015⁶² included 365,426 women aged 40-74 years who did not have a history of breast cancer or breast implants and had complete information on demographic and breast health history information in the USA. The rates of interval cancers increased by density at all ages (see Table 7).

	BI-RADS mammographic breast density							
Age	Almost entirely fat	Scattered	Heterogeneously dense	Extremely				
(years)		fibroglandular densities		dense				
40 – 49	0.19 (0.04, 0.56)	0.26 (0.16, 0.40)	0.76 (0.61, 0.93)	0.98 (0.67, 1.37)				
50 - 59	0.14 (0.05, 0.34)	0.33 (0.23, 0.45)	0.80 (0.65, 0.98)	1.11 (0.72, 1.64)				
60 - 69	0.23 (0.10, 0.45)	0.49 (0.37, 0.65)	0.96 (0.75, 1.22)	1.13 (0.54, 2.09)				
70 – 74	0.35 (0.10, 0.90)	0.55 (0.33, 0.86)	1.15 (0.73, 1.72)	3.45 (1.27, 7.50)				

Table 7. Interval cancer rate per 1000 mammograms (95% CI).

Nelson 2016⁵⁹ studied 405,191 women aged 40 to 89 years who had routine screening with digital mammography in 5 registries in the USA, using the BIRADS 4th edition. Women with less dense breasts had lower rates of false-negative mammography results than those with more dense breasts (See Table 8).

Table 8. Rates of false-negative digital mammography per 1,000 women screened per round and 95% CI)

	40-49 years	50-59 years	60-69 years	70-79 years	80-89 years
Fat	0.2 (0.0, 0.9)	0.3 (0.1, 0.7)	0.6 (0.2, 1.5)	0.3 (0.1, 1.1)	0.4 (0.1, 3.1)
Scattered	0.5 (0.3, 0.7)	0.7 (0.5, 0.9)	0.8 (0.6, 1.2)	1.2 (0.7, 1.9)	1.0 (0.6, 1.7)
Heterogeneous	1.3 (1.0, 1.7)	1.4 (1.0, 2.0)	1.7 (1.3, 2.3)	2.3 (1.6, 3.4)	1.1 (0.5, 2.4)
Extreme	1.7 (1.2, 2.5)	1.6 (0.9, 2.8)	1.2 (0.6, 2.7)	5.6 (2.4, 12.9)	6.9 (2.5, 18.5)
p value for trend	<0.001	<0.001	0.02	0.002	0.17
across density groups					

Rawashdeh 2013⁵⁸ studied the detectability of lesions by mammographic breast density in a reader study in Australia. The series contained 60 digital cases containing 20 positive (biopsy-proven) cases; women were a mean of 54 years old (range 47 to 78 years). The same radiologist who chose the images was responsible for assessing mammographic breast density using BIRADS 3rd edition. There was a negative correlation between lesion detection on mammography and breast density (r = -0.64, p = 0.007), suggesting that cancers were harder to see on mammograms from women with dense breasts.

Timmermans 2017⁶⁰ assessed 351,532 women aged between 50 and 69 years using the BI-RADS 4th edition in Belgium. They found a systematic increase of interval cancer rate with breast-density class: BIRADS I: 1.11 per 1000; BIRADS II: 2.02 per 1000; BIRADS III: 3.80 per 1000; and BIRADS IV: 5.36 per 1000. The percentage of cancers detected in the screening programme over the total number of cancers registered (screen-detected plus interval cancers, reflecting the sensitivity of the screening programme) decreased from 84% for BIRADS I, to 74% for BIRADS II, to 60% for BIRADS III, to 46% for class IV.

Semi-automated methods

No eligible studies were found.

Automated methods

Destounis 2017¹⁸ reported mammographic sensitivity by Volpara automated density grade: Grade 1: 95%; Grade 2: 89%; Grade 3: 83%; Grade 4: 65%; R² = 0.914. Destounis 2017¹⁸ also reported that in univariate analysis, density was associated with the risk of diagnosis of interval cancer versus screendetected cancer:

- Automated density grade 3 vs. 1 or 2: OR 1.94 (95% Cl 1.10-3.43, p=0.021).
- Automated density grade 4 vs. 1 or 2: OR 5.60 (95% CI 2.99-10.47, p<0.001).
- Volumetric breast density quartile 2 vs. quartile 1: OR 1.73 (95% CI 0.72-4.13, not significant).
- Volumetric breast density quartile 3 vs. quartile 1: OR 2.08 (95% CI 0.90-4.83, not significant).
- Volumetric breast density quartile 4 vs. quartile 1: OR 5.58 (95% Cl 2.61-11.93, p<0.001).

After adjustment for age, the odds ratios were:

- Automated density grade 3 vs. 1 or 2: OR 1.64 (95% CI 0.92-2.94, not significant).
- Automated density grade 4 vs. 1 or 2: OR 4.14 (95% CI 2.13-8.03, p<0.001).
- Volumetric breast density quartile 2 vs. quartile 1: OR 1.67 (95% CI 0.70-4.01, not significant).
- Volumetric breast density quartile 3 vs. quartile 1: OR 1.85 (95% Cl 0.79-4.33, not significant).
- Volumetric breast density quartile 4 vs. quartile 1: OR 4.17 (95% CI 1.89-9.21, p<0.001).

Holland 2017⁶¹ reported that if the thresholds of Volpara percent dense volume were set so that 38.5% of controls were classified as having dense breasts, then 66.1% (CI 55.8–76.2) of the women with an interval cancer had dense breasts.

Wanders 2017⁷ studied women aged 50–75 years participating in a biennial screening program (analysed n=111,898 examinations belonging to 53,239 women) in 1 centre in The Netherlands. There was a reduced mammographic sensitivity (%) by breast density (Volpara density grade [VDG]): VDG 1: 85.7% (78.1; 91.0); VDG 2: 77.6% (73.2; 81.5); VDG 3: 69.5% (64.1; 74.4); VDG 4: 61.0% (51.2; 70.0); p<0.001. Interval breast cancer rates were higher in higher breast density categories compared to lower density categories with a significant linear trend (p-trend<0.001). Interval cancer rates in the first year after a screening examination were 0.2, 0.8, 1.2, and 2.9% (p-trend<0.001) in VDG categories 1, 2, 3, and 4, respectively. The interval cancer rate per 1000 was: VDG1: 0.7 (0.4; 1.1); VDG 2: 1.9 (1.5; 2.3); VDG 3: 2.9 (2.3; 3.5); VDG 4: 4.4 (3.2; 6.0); p<0.001.

3.2.3 Question 2b

As several systematic reviews were found in the search for question 2b, it was decided to conduct a systematic review of these systematic reviews (as specified in the protocol). The methods used were those advocated in Smith et al (2011): "Methodology in conducting a systematic review of systematic reviews of healthcare interventions".⁶³

Characteristics of included studies

The included studies are shown in Table 9; latest search dates of the systematic reviews ranged from January 1, 2008⁶⁴ to December 31, 2015.⁶⁵ The number of included studies ranged from five⁶⁴ to 37.⁶⁶ One systematic review⁶⁵ included Asian women only, and in one the age range in included studies was 40-84 years; in the other three systematic reviews the population was not stated. Systematic reviews were assessed for the extent to which they matched our scope; all the included reviews appeared to answer an appropriate question and all included density measurement methods specified in our review protocol. They reported unadjusted outcome and/or age-adjusted outcome measures, or did not report adjustment.

	Our scope:	Bae 2016 ⁶⁵	Huo 2014 ⁶⁶	Elias 2014 ⁶⁷	Antoni 2013 ⁶⁸	Cummings 2009 ⁶⁴ and McCormack 2006 ⁶⁹
Question	Q2b: Is mammographic breast density a risk factor for developing breast cancer?	This meta-analysis investigated the association between breast density in mammography and breast cancer risk in Asian women.	To critically review the current literature on mammographic density (MD) and summarize the current evidence for its association with breast cancer (BC).	Features (including density) related to HER2 overexpression (a marker of cancer aggressiveness)	A systematic review of studies of mammographic density (MD) in relation to risk of subtype-specific breast cancer, by ER, PR, and HER2 status or gene expression profiles.	To review prospective studies about models and sex hormone levels to assess breast cancer risk and use meta-analysis with random effects models to summarize the predictive accuracy of breast density.
Population	Women aged 50-70 attending breast cancer screening from the general population (not specifically chosen high-risk groups) with a population prevalence similar to the UK	Asian women. Seven datasets were of premenopausal women and eight were of postmenopausal women	Not stated	Not stated	Age range in included studies 40-84 years	Not reported
Density measurements	BI-RADS scale scored by a single qualified reader BI-RADS scale scored by a group consensus of readers Volpara Quantra Cumulus ImageJ	Wolfe classification; percent density (%); DA, density area (cm ²); MDA, mean dense area (cm ²); TBA, total breast area (cm ²); VDG, volumetric density grade (%); ADA, absolute dense area (cm ²).	BIRADS, Cumulus, Boyd semi- quantitative scale, computer- assisted method (CAM), Tabar, DM- Scan, automated volumetric breast	BI-RADS	BIRADS, percent density, visual (fatty, mixed/dense), Wolfe or Cumulus in different included studies	One study assessed breast density by use of BI-RADS ratings and four measured percent density, in addition to the studies included in McCormack 2006 ⁶⁹

Table 9. Characteristics of included studies

	 Single energy x-ray absorptiometry (SXA) DM-Density M-Vu Breast Density Absolute fat volume Absolute fibroglandular volume Density calculated on a single mammogram view (e.g. MLO) Density calculated from 2 views (e.g. MLO plus CC) 		density, automated measure, percent density, semi- automated technique: threshold technique (TT), fully automated method (FAM), semi- automated method (SAM), standard mammogram form (SMF)			
Outcomes	Head to head studies (2 or more types of density measurement): Positive and negative concordance between pairs of tests; comparison of characteristics of discordant cases: in particular comparison of risk of breast cancer and measures of missing cancers at screening such as interval cancers. Single or head to head studies (1 or more types of test): Proportion of women who have an interval cancer after screening by density for each test; proportion of women who have breast cancer by density for each test (includes reporting of absolute risk which is of particular interest in low density	Effect size based on adjusted odds ratios (adjustment factors not stated)	Mammographic density as a risk factor for breast cancer; association of mammographic density with breast cancer subtypes and tumour characteristics.	Odds ratio of HER overexpression by density categories	Relative risk estimates and their 95% CIs of subtype-specific breast cancer were estimated by individual studies as odds ratios in case– control and case-only studies and as hazard/rate ratios in cohort studies. The most fully adjusted RRs reported were included. Controlling for age was included in eligibility criteria. In case-only studies, we extracted estimates of the ratios of relative risks (RRR) of ER+ versus ER- breast cancer	Relative risk of breast cancer; all adjusted for age; some studies adjusted for additional factors which were not stated except to say that studies that further adjust for body mass index or weight observed somewhat stronger associations

	groups); distribution of cancer type by risk group for each test; Odds or risk ratios from <u>unadjusted</u> univariable models of density as a predictor of risk; odds or risk ratios from age-adjusted multivariate models of density as a predictor of risk				associated with MD categories; if ER+ subtypes were used as the reference group, the inverse of the RRRs and its confidence limits were taken.	
Study design	Head to head or single arm studies	Cohort or case control studies	Not stated	Not stated	(i) Case-control/ case- cohort/ cohort studies in which MD in cases, defined by subtype, is compared to non-cases and (ii) case-only designs where age- adjusted MD in ER+ cases is compared to that in ER- cases.	Prospective studies
Limits (language and date)	English; from 2000	Language not stated: up to December 31, 2015	English; date not stated	Stated to be no restrictions (assume this means none for language); date to February 8, 2013	English; 5th June 2012	Language not stated; January 1, 2004, through January 1, 2008
Limitations		Overall ES from all 6 articles not calculated, because the number of articles related to Asian women was small and because the breast density index varied	Very little information on systematic review methods	The authors did not formally use a quality assessment tool; the results from this meta-analysis reflect univariable associations only, as	Differences in density assessment methods. Restricted to English- language publications and only found studies conducted in North America and Europe, in	The studies reviewed had various designs, populations, and methods of analysing data. Although breast density is a strong risk factor for breast

across articles. The	individual studies did	prodominantly	concor BLRADS has
across articles. The		predominantly	cancer, BI-RADS has
subgroup analysis could	not adjust their	Caucasian women, thus	only modest
not include results that	results for potential	other countries and	reproducibility and
were not divided by	confounders, such as	ethnic groups,	more reproducible
menopausal status. The	lesion size or	particularly at lower	quantitative
analysis of premenopausal	histologic breast	breast cancer risk are	approaches are not
women was insufficient	cancer subtype, thus	not included.	validated or feasible
for dose-response meta-	precluding solid	Additionally, there was	for clinical use; so
regression (DRMR). The	causal inference.	the lack of power to	increased predictive
subjects included only		analyse combinations of	accuracy may not be
women who were born		ER and PR status.	applicable to current
and lived in Asia (women			clinical practice.
born in Asia but emigrated			
overseas excluded). In the			
case-control studies, the			
most recent mammogram			
before breast cancer			
diagnosis were used, but			
this does not reflect the			
fact that breast density			
changes with age.			

Methodological quality of included studies

Systematic reviews were assessed for quality using the AMSTAR criteria, which have been validated as a means to assess the methodological quality of systematic reviews and include establishing the research question and inclusion criteria before the conduct of the review, data extraction by at least two independent data extractors, comprehensive literature review with searching of at least two databases, key word identification, expert consultation and limits applied, detailed list of included/excluded studies and study characteristics, quality assessment of included studies and consideration of quality assessments in analysis and conclusions, appropriate assessment of homogeneity, assessment of publication bias and a statement of any conflict of interest. AMSTAR is not designed to generate an overall score. The quality appraisal is shown in Figure 10 below.

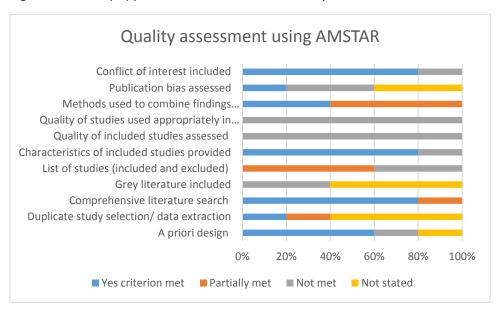


Figure 10. Quality appraisal for included studies for question 2b

Smith 2011⁶³ recommends tabulating the results of the systematic reviews, including the primary outcome of interest and the quality assessment (see Appendix 6). None of the studies stated that grey literature was included; none included a list of both included and excluded studies; none reported that the scientific quality of the included studies was assessed or used appropriately in formulating conclusions. Analyses were mainly narrative, which was appropriate.

Analysis of the evidence

Visual methods

Antoni 2013⁶⁸ focused on mammographic breast density as a risk factor by cancer type (estrogen receptor positive [ER+] and negative [ER-]), and found 19 studies, of which only seven provided analyses adjusted only for age, and of these, three used BIRADS and one used percent density. The review reported that mammographic density is a strong marker of breast cancer risk. For the eligible study using percent density, the relative risk of ER+ tumours was 1.38 (1.22, 1.57, p<0.05) for low vs. minimal density and the relative risk of ER- tumours was 0.95 (0.67, 1.34, not significant). These risks were not shown for the eligible BIRADS studies.

Bae 2016⁶⁵ investigated the association between mammographic breast density and breast cancer risk in Asian women using summary effect sizes (sES based on adjusted odds ratios [factors adjusted for not reported]) and found six studies (including three using percent density and one using Volpara [see below]). An overall ES reflecting information from all 6 articles was not calculated, because the number of articles was small and the breast density index varied across articles. For premenopausal women assessed using percent density, the sES was 3.23 (95% Cl 2.23, 4.66; two studies). For postmenopausal women assessed using percent density, the sES was 1.62 (95% Cl 1.13, 2.32; three studies). The authors concluded that breast cancer risk in Asian women increased with mammographic breast density measured using percent density.

Cummings 2009⁶⁴ (an update of McCormack 2006⁶⁹) reviewed prospective studies about models and sex hormone levels to assess breast cancer risk, including one study assessing mammographic breast density using BI-RADS and four measuring percent density, in addition to the studies included in McCormack 2006⁶⁹. All were adjusted for age; some studies adjusted for additional factors which were not stated except to say that studies that further adjust for body mass index or weight led to somewhat stronger associations. The authors found that breast density was strongly associated with breast cancer: relative risk vs. BIRADS category I was 2.03 (95% CI 1.61, 2.56) for BIRADS II; 2.95 (95% CI 2.32, 3.73) for BIRADS III; and 4.03 (95% CI 3.10, 5.26) for BIRADS IV. For measurement of percent density, vs. <5% dense area, the RR was 1.74 (95% CI 1.50, 2.03) for 5 – 24% density; 2.15 (95% CI 1.87, 2.48) for 25 – 49% density; 2.92 (95% CI 2.55, 3.34) for 50 – 74% density; and 4.20 (95% CI 3.61, 4.89) for >75% density.

Elias 2014⁶⁷ focused mainly on human epidermal growth factor receptor type 2 (HER2) overexpression (a marker of breast cancer aggressiveness), and found 14 studies which provided unadjusted results. The review reported that extremely dense breasts on mammography increased the chance of HER2 over-expression (BI-RADS breast density category 4 extremely dense had a pooled odds ratio of 1.37 for HER2 over-expression vs. BIRADS 1, 2 and 3; 95% Cl 1.07–1.76, p=0.01; 9 studies), i.e. were associated with more aggressive cancers.

Huo 2014⁶⁶ found 37 studies including four providing results only adjusted for age: two using BIRADS, and two using (semi-automated) methods (see below). One of the BIRADS studies was reported as showing the OR of an interval cancer for women with dense breasts was 1.62, and the age-adjusted rate ratio was 2.45 for breast cancer incidence (no 95% CI shown). The other BIRADS study was reported as showing that BIRADS IV breasts were more often mammographically occult (no data shown).

Semi-automated methods

Huo 2014⁶⁶ found one study using Cumulus and reported that \geq 50% density was associated with a 2.63-fold risk of developing breast cancer compared to density <10%; and high density was also associated with ER-positive tumours. The other study of a computer-assisted (semi-automated) method (not stated which) showed that dense area was a better predictor of breast cancer risk than percent density (but no data shown).

Automated methods

Bae 2016⁶⁵ reported for pre- and post-menopausal women assessed using Volpara, the summary effect size (sES) was 2.52 (95% CI 1.84, 3.46; one study).

3.2.4 Discussion

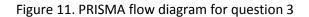
Seven studies were included in question 2a. All the studies found a reduced sensitivity of mammography and/or an increased risk of interval cancers with increasing mammographic breast density, in screening programmes in non-UK countries which have a shorter screening interval. Of the five systematic reviews we included in question 2b, the one with the most recent search date included Asian women only;⁶⁵ the previous one contained very limited information on systematic review methods so scored poorly on the AMSTAR criteria;⁶⁶ the one prior to that focused mainly on HER2 over-expression;⁶⁷ the one before that focused on cancer type (e.g. estrogen receptor positivity).⁶⁸ Cummings 2009⁶⁴ was an update of McCormack 2006⁶⁹ but did not report the population covered or other details of the included or excluded studies. In spite of these limitations, overall, the strength of the association between mammographic breast density and risk of breast cancer and the consistency of results between studies using varying methods, designs and locations suggests that mammographic breast density is an independent risk factor for breast cancer.

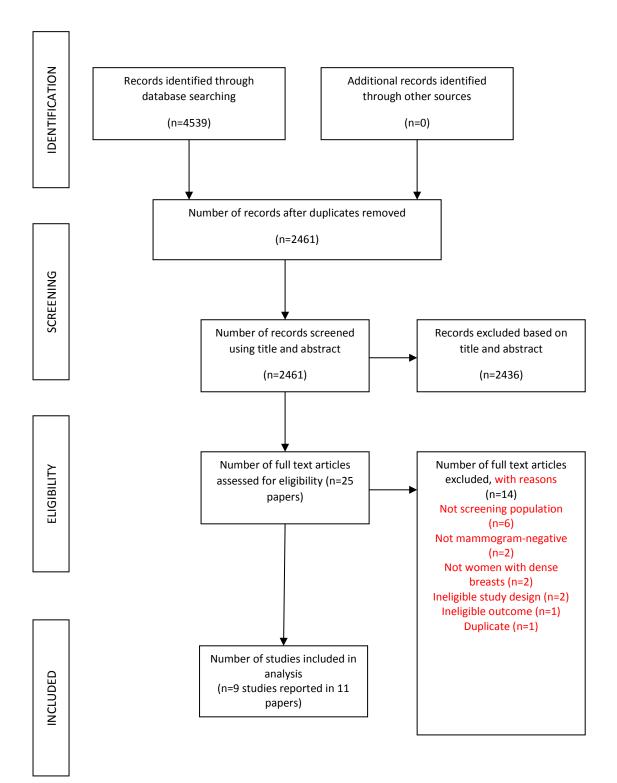
3.2.5 Summary

Question 2: NSC criterion 1: There should be robust evidence about the association between the risk or disease marker and serious or treatable disease: **Met.**

The evidence for the association between density and breast cancer was met for all density measurement methods.

3.3 Key question 3


Question 3: What is the test accuracy of ultrasound following mammography in comparison to mammography to detect cancer in women with dense breasts?


This relates to NSC criterion 4:

"There should be a simple, safe, precise and validated screening test."

3.3.1 Description of the evidence

Searches of electronic databases identified 4539 unique studies. 258 records were examined at title and abstract stage, of which 25 were examined as full texts. Eleven of the papers (reporting on nine studies)⁷⁰⁻⁷⁸ were subsequently included in the review, and 14 studies were excluded (listed in Appendix 3). The numbers of studies are shown in the PRISMA flow chart below (Figure 11).

3.3.2 Characteristics of the included studies

During this update review, we found eleven papers reporting on nine studies, but none were classified as good-quality. Sample sizes ranged from 394⁷⁴ to 10,282,⁷⁷ and the studies were conducted in Italy,⁷⁶ Korea,^{70,72,73,75} Sweden⁷⁸ and the USA.^{71,74,77} Ages ranged from 24 or younger to at least 88 years, although some studies did not report the ages of the included women.

3.3.3 Methodological quality of included studies

Including the two additional eligible studies from the USPTF review (Brem 2015⁷⁹ and Giuliano 2013⁸⁰), quality appraisal was conducted on eleven studies. The adjusted QUADAS-2 quality assessment tool was used which provided two sets of data: firstly, the risk of bias and secondly, concerns regarding eligibility, which are shown in Figures 12 and 13, respectively. Patient selection was at high risk of bias in five (45%) studies^{70-72,74,81} due to patients self-selecting whether or not to undergo ultrasound, and only a minority of patients took up the offer. There was a low risk of bias for the index tests (mammography or ultrasound) for all the studies except one (9%) study⁷³ in which the interpretation of the ultrasound used the non-standard "downgrade criteria". Three (27%) studies^{71,76,81} did not follow women up for interval cancers, leading to a high-risk of bias for the reference standard and the flow/timing domains. In addition, the interval between the tests was unclear in four (36%) studies,^{70,72,74,78} leading to an unclear risk of bias in the flow/timing domain.

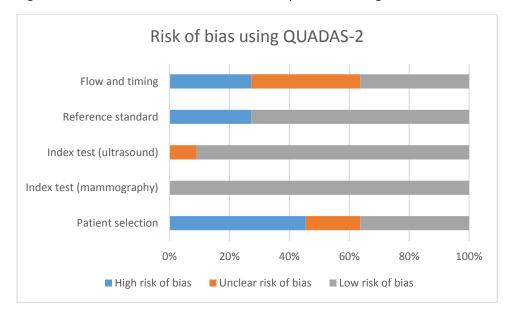


Figure 12. Risk of bias for studies included in question 3 using QUADAS-2

All the studies were assessed as high concern regarding applicability due to differing populations not generalisable to the UK screening population (the proportion of women outside the 50-70 year age range was between 33%⁸⁰ and 60%⁷⁸ in seven studies; the other four did not report this percentage, but of these, one⁷⁵ was in Korea; in two,^{74,81} only around 30% of eligible women participated, and in the other,⁷¹ 67% of participants had risk factors compared with 26% in the overall screening population). There was a low concern about applicability for the index tests (mammography or ultrasound) for all the studies except one (9%) study⁷³ in which the interpretation of the ultrasound used the non-standard "downgrade criteria".

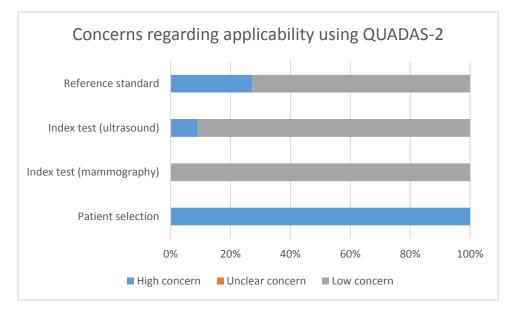


Figure 13. Concern regarding applicability for studies included in question 3

3.3.4 Analysis of the evidence

The USPTF²⁵ performed a systematic review of the test performance and clinical outcomes of supplemental screening with breast ultrasonography in women with dense breasts and negative mammography results. MEDLINE, PubMed, EMBASE, and Cochrane databases were searched from January 2000 to July 2015. This review found two good-quality studies (see Table 10 below) which reported that sensitivity of ultrasonography for women with negative mammography results ranged from 80% to 83%; specificity, from 86% to 95%; and positive predictive value (PPV) from 3% to 8%. Rates of additional cancer detection with ultrasonography were 4.4 per 1000 examinations (89% to 93% invasive); recall rates were 14%. The review reported that good-quality evidence was sparse. Studies were small and CIs were wide. Definitions of recall were absent or inconsistent. The review concluded that supplemental screening of women with dense breasts finds additional breast cancer but increases false-positive results. It is important to assess whether these results are generalisable to the UK population. The ultrasound studies in the USPTF review were examined to assess whether they would meet our inclusion criteria individually (see Table 10). We sought to identify whether the studies provided estimates of sensitivity, specificity, recall rates, biopsy rates, PPV and cancer detection rates of supplemental ultrasound which could be analysed alongside the data from the studies in our update review (see below). The results of our review may differ from the USPTF review because they included, and we excluded, studies of high-risk women, women outside of the population-based screening program, mixed screening and diagnostic populations, and film mammography; we also required data from women with dense breasts to be shown separately, which they did not.

A: USPTF rev	iew papers		Eligible for our update review?	
Study	tudy Sensitivity (all Specificity (all patients in study) patients in study)		Eligible for our review (and reason if not eligible)	
Berg 2012*	83%	86%	No – high risk women	

Brancato, 2007	Not reported	Not reported	No – patients were self-referring to mammography, i.e., outside of the population-based screening program offered to women of 50-69 years.
Brem 2015 ⁷⁹	Not reported	Not reported	Yes
Corsetti 2011*	80%	95%	No – film mammography not digital
Girardi 2013	Not reported	Not reported	No – women with dense breasts not shown separately
Giuliano 2013 ⁸⁰	Not reported	Not reported	Yes
Hooley 2012 (100%	77%	No – mixed screening and diagnostic population
Kelly 2010	68%	92%	No – high risk women
Leong 2012	100%	79%	No – film mammography not digital
Parris 2013	Not reported	Not reported	No –women with dense breasts not shown separately
Venturini 2013	Not reported	Not reported	No – women with dense breasts not shown separately
Weigert 2012 ⁸¹	Not reported	Not reported	Yes
Youk 2011	100%	72%	No - film mammography not digital

* Assessed as good quality in the USPTF review

Only Brem 2015⁷⁹ and Giuliano 2013⁸⁰ were included in our update data as separate studies; Weigert 2012⁸¹ is an earlier publication from the same study as Weigert 2015⁷⁷ and Weigert 2017⁸² which is included in our update. The Tables below show the eligible studies from the USPTF review (Table 11) and from our update searches (Table 12). We include the following information: quality issues, and whether studies provided evidence on sensitivity, specificity, recall rate, biopsy rate, PPV (of recall or of biopsy) and cancer detection rate of supplemental ultrasound in women with mammogramnegative dense breasts.

Table 11. Studies in the USPTF 2016 review: quality issues, and sensitivity, specificity, recall rate, biopsy rate, positive predictive value (of recall or of biopsy) and cancer detection rate of supplemental ultrasound in women with mammogram-negative dense breasts

USPTF review papers	If eligible for our update	e review, data	in women with r	nammogram-neg	ative dense brea	sts only			
Study	Quality issues	Sensitivity (%)	Specificity (%)	Recall rate (per 1000)	Biopsy rate (per 1000)	Positive predictive value of recall (%) = PPV ₁	Positive predictive value of biopsy (%) = PPV ₂	Benign biopsies (false positives) per 1000	Cancer detection rate (per 1000)
Brem 2015 ⁷⁹ (ABUS)	40.2% aged <50 yr, plus 6.7% >70 yr	Not reported	Not reported	2407/13107 = 184/1000	552/13107 = 42/1000	30/2407 = 1.2%	30/552 = 5.4%	522/13107 = 39.8/1000	30/13107 = 2.3/1000
Giuliano 2013 (ABUS) ⁸⁰	22.9% <50 yr plus 12.0% ≥70 yr	42/43 = 97.67%	3365/3375 = 99.70%	Not reported	52/3418 = 15.2/1000	Not reported	42/52 = 80.8%	10/3418 = 2.9/1000	42/3418 = 12.3/1000
Weigert 2012 (HHUS) ⁸¹	Only 30% of eligible women had US. No follow up for interval cancers.	Not reported	Not reported	1196/8647 = 138/1000	418/8647 = 48.3/1000	28/1196 = 2.3%	28/418 = 6.7%	390/8647 = 45/1000	28/8647 = 3.2/1000

ABUS = automated ultrasound; HHUS = handheld ultrasound

Table 12. Studies from our update searches: quality issues, and sensitivity, specificity, recall rate, biopsy rate, positive predictive value (of recall or of biopsy) and cancer detection rate of supplemental ultrasound in women with mammogram-negative dense breasts

Update review papers	Quality issues	Sensitivity (%)	Specificity (%)	Recall rate (per 1000)	Biopsy rate (per 1000)	Positive predictive value of recall (%) = PPV ₁	Positive predictive value of biopsy (%) = PPV ₂	Benign biopsies (false positives) per 1000	Cancer detection rate (per 1000)
Chang 2015 ⁷⁰	Median 47 (range 27-79) yr, i.e. >50% aged	5/5 =	624/985 =	366/990 =	Not	5/366 = 1.4%	Not reported	Not reported	5/990 =
(HHUS)	<50 yr	100%	63.4%	370/1000	reported				5.1/1000
Destounis	Patients self-selected for US after	Not	Not	135/5434 =	100/4898	18/135 =	18/100 =	82/5434 =	18/5434 =
2015 ⁷¹ and	notification of dense breasts. Only 5.9% of	reported	reported	248/1000	women =	13.3%	18%	15/1000	3.3 per
Destounis	those eligible participated. 17.93% aged <46			screens	20.4/1000				

2017 ⁸³ (HHUS)	yr; 4.27% >76 yr. No follow up for interval cancers								1000 screens
Hwang 2015 ⁷² (HHUS)	25.3% of women with negative mammograms underwent US (women who requested US, regardless of risk factors, not only women with dense breasts). 12.5% of these lost to follow up. Median age 49.5 yr; range 30–76 yrs. 6.2% in their 30's, 44.2% in their 40's, 40.1% in their 50's, 8.3% in their 60's and 1.2% in their 70's.	8/9 = 88.9%	Not reported	Not reported	Not reported	Not reported	Not reported	Not reported	Not reported
Kim 2016 ⁷³ (HHUS)	Mean ± SD: 51.2 ± 7.7 yr, range 24–78 yr, i.e. around 44% <50 yr and around 1% >70 yr. The focus of the study was on using "downgrade criteria" which would not be used in routine screening practice elsewhere.	9/9 = 100%	2340/3162 = 74%	831/3171 = 262/1000	147/3171 = 46/1000	9/831 = 1.1%	9/131 = 6.9%	122/3171 = 38/1000	9/3171 = 2.8/1000
Klevos 2017 ⁷⁴ (HHUS)	Only 32.5% of eligible women participated; small sample size	Not reported	Not reported	69/394 = 175/1000	26/394 = 66/1000	Not reported	Not reported	Not reported	0/394 = 0/1000
Moon 2015 ⁷⁵ (HHUS) Tagliafico	Self-selected for US; only 51.5% eligible participated. Mean 53.8 (range 40 to 87) yr Median 51 yr (IQR 44-78 yr; range, 38-88	3/3 = 100% -	1064/1653 = 64.4% -	592/1656 = 357/1000 88/3231 =	86/1656 = 52/1000 47/3231 =	3/592 = 0.51% 23/88 =	2/86 = 2.33% 23/47 =	84/1656 = 51/1000 24/3231 =	3/1656 = 1.8/1000 23/3231 =
2016 ⁷⁶ (HHUS)	yr). Not followed for interval cancers			27/1000	14.5/1000	26.1%	48.9%	7.4/1000	7.1/1000
Weigert 2015 ⁷⁷ and Weigert 2017 ⁸² (HHUS)	Self-selected for US; only around 30% of eligible women participated. No follow up for interval cancers	-	-	1310/10282 = 127/1000	435/10282 = 42/1000	24/1310 = 1.8%	24/435 = 5.5%	411/10282 = 40/1000	24/10282 = 2.3/1000
Wilczek 2016 ⁷⁸ (ABUS)	Mean (SD) 49.5 (7.9), range 40-69 yr, i.e. >50% were <50 yr. Unclear how many patients did not consent to study and if those who consented were representative	4/9 = 44.4%	1625/1636 = 99.3%	15/1645 = 9.1/1000	12/1645 = 7.3/1000	4/15 = 26.7%	4/12 = 33.3%	8/1645 = 4.9/1000	4/1645 = 2.4/1000

ABUS = automated ultrasound; HHUS = handheld ultrasound

Sensitivity and specificity

Including the data from the eligible USPTF studies and our update studies, the sensitivity of ultrasonography for women with dense breasts with negative mammography ranged from 44%⁷⁸ to 100%^{70,73,75} (available data from seven studies) and specificity from 63%⁷⁰ to 100%⁸⁰ (available data from six studies; see Figure 14 below). The study with the highest values for both sensitivity and specificity⁸⁰ included around 35% of women outside the 50-70-year age range, so may not be generalisable to the UK screening population. Most of the studies had wide confidence intervals around the estimate of the sensitivity due to small numbers of events (the sum of the true positives [TP] plus false negatives [FN] was less than 10 people in five^{70,72,73,75,78} of the seven studies providing data on sensitivity).

Figure 14: Forest plot of sensitivity and specificity of additional ultrasound in mammogram-negative dense breasts

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
Berg 2012 (high risk)	0	0	0	0	Not estimable	Not estimable	
Brancato 2007 (not screening pop)	0	0	0	0	Not estimable	Not estimable	
Brem 2015 (no data)	0	0	0	0	Not estimable	Not estimable	
Chang 2015	5	361	0	624	1.00 [0.48, 1.00]	0.63 [0.60, 0.66]	
Corsetti 2011 (film)	0	0	0	0	Not estimable	Not estimable	
Destounis (no data)	0	0	0	0	Not estimable	Not estimable	
Girardi 2013 (not data)	0	0	0	0	Not estimable	Not estimable	
Giuliano 2013	42	10	1	3365	0.98 [0.88, 1.00]	1.00 [0.99, 1.00]	
Hooley 2012 (screen/diag)	0	0	0	0	Not estimable	Not estimable	
Hwang 2015	8	0	1	0	0.89 [0.52, 1.00]	Not estimable	
Kelly 2010 (high risk)	0	0	0	0	Not estimable	Not estimable	
Kim 2016	9	822	0	2340	1.00 [0.66, 1.00]	0.74 [0.72, 0.76]	
Klevos 2017 (no data)	0	0	0	0	Not estimable	Not estimable	
Leong 2012 (film)	0	0	0	0	Not estimable	Not estimable	
Moon 2015	3	589	0	1064	1.00 [0.29, 1.00]	0.64 [0.62, 0.67]	•
Parris 2013 (not dens)	0	0	0	0	Not estimable	Not estimable	
Tagliafico 2016 (no data)	0	0	0	0	Not estimable	Not estimable	
Venturini 2013 (not dens)	0	0	0	0	Not estimable	Not estimable	
Weigert 15/17 (no data)	0	0	0	0	Not estimable	Not estimable	
Weigert 2012	28	401	1	7450	0.97 [0.82, 1.00]	0.95 [0.94, 0.95]	
Wilczek 2016	4	11	5	1625	0.44 [0.14, 0.79]	0.99 [0.99, 1.00]	
Youk 2011 (film)	0	0	0	0	Not estimable	Not estimable	
							0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Recall rates and positive predictive value of recall

Including the data from the eligible USPTF 2016 studies and our update studies, recall rates were 9.1 per 1000⁷⁸ to 370 per 1000.⁷⁰ Quality assurance guidelines for breast cancer screening radiology from the NHS Breast Screening Programme¹ contain the following radiological quality standards (Table 13):

Table 13. Quality standard for mammographic recall rates

Objective	Criteria	Minimum standard	Achievable standard
To minimise the number of women screened who are referred for further tests	The percentage of women who are referred for assessment	(a) Prevalent screen < 10% Incident screen < 7%	(a) Prevalent screen < 7% Incident screen < 5%

Of the ten studies providing data on recall rates, only two^{76,78} had a recall rate for ultrasound of <10% (<100 per 1000); these two studies were conducted in Europe, in contrast to the other studies which were conducted in Korea or the USA, potentially reflecting differences in the patient populations and/or healthcare systems (see Figure 15).

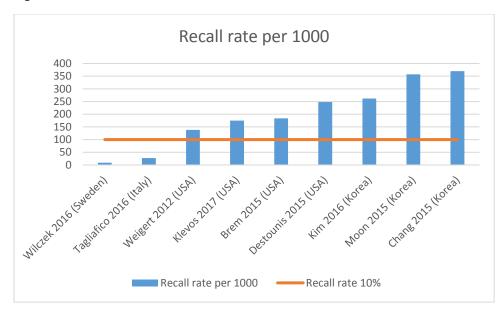
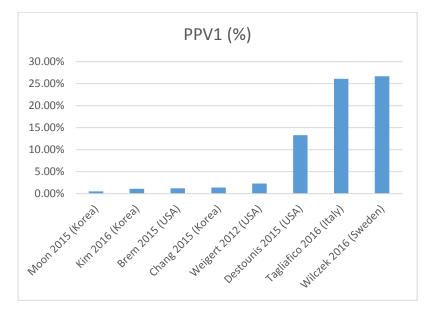
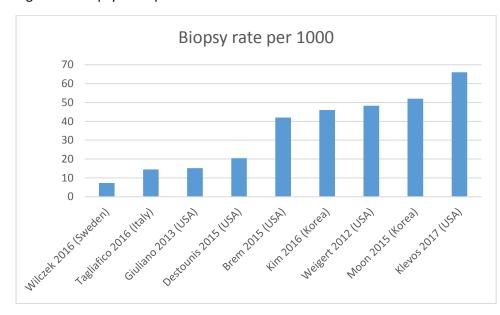
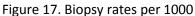
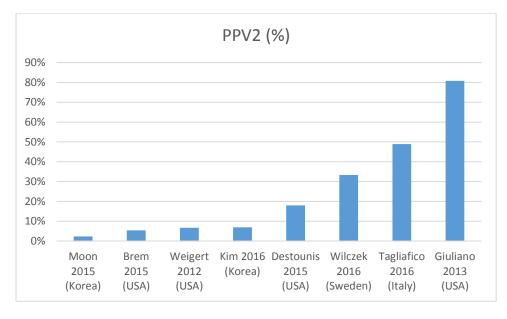



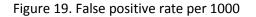
Figure 15. Recall rates


The positive predictive value of recall (PPV₁; i.e. the likelihood of cancer among women who were recalled) ranged from $0.51\%^{75}$ to 26.7%;⁷⁸ higher (better) values were seen in the two European studies (see Figure 16).


Figure 16. Positive predictive value of recall (PPV₁; i.e. the likelihood of cancer among women who were recalled)

Positive predictive value of biopsy and false positives


Including the data from the eligible USPTF studies and our update studies, biopsy rates were between 7.3 per 1000⁷⁸ and 66 per 1000;⁷⁴ the lowest rates were seen in the European studies (see Figure 17).



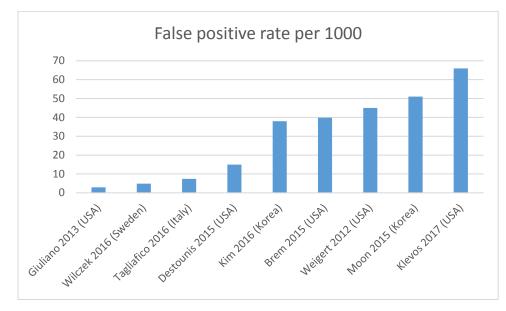
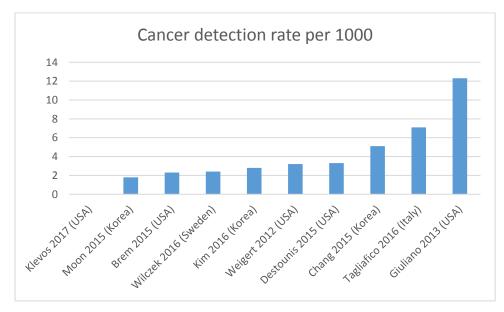

The positive predictive value of biopsy (PPV₂; i.e. the likelihood of cancer among women who had a biopsy) ranged from 2.33%⁷⁵ to 80.8%;⁸⁰ see Figure 18.

Figure 18. Positive predictive value of biopsy (PPV₂; i.e. the likelihood of cancer among women who had a biopsy)

Including the data from the eligible USPTF studies and our update studies, the rate of benign biopsies (false positives) ranged from 2.9 per 1000⁸⁰ to 51 per 1000;⁷⁵ see Figure 19.



Cancer detection rates

The expected interval cancer rates after mammography are: 0–24 months: 1.2 invasive cancers per 1000 women screened; 25–36 months: 1.4 per 1000 women screened.¹ Rates of additional cancer detection with supplemental ultrasound were 0 per 1000⁷⁴ to 12.3 per 1000;⁸⁰ see Figure 20.

Figure 20. Cancer detection rates per 1000

Additional outcomes reported

Quality assurance guidelines for breast cancer screening radiology from the NHS Breast Screening Programme¹ (Table 14) state that one of the aims is to maximise the number of small invasive cancers detected (specifically invasive cancers < 15 mm in diameter).

Objective	Criteria	Minimum standard	Achievable standard
To maximise the number of small invasive cancers detected	The rate of invasive cancers < 15 mm in diameter detected in eligible women invited and screened	Prevalent screen ≥2 per 1000 Incident screen ≥2.3 per 1000	Prevalent screen ≥2.8 per 1000 Incident screen ≥3.1 per 1000

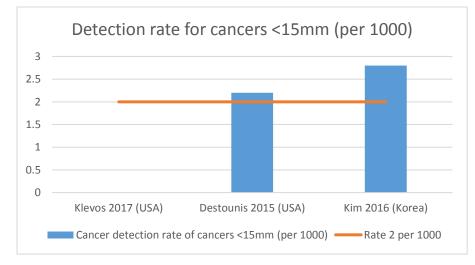
Table 14. Aim of mammography is to maximise the number of small invasive cancers detected

We therefore show the size of the cancers detected by supplemental ultrasound, as well as other features such as grade, lymph node involvement or distant metastases, and hormone receptor status, where these were reported. One study⁷¹ reported that of the 100 BIRADS 4 or 5 lesions on ultrasound only that were biopsied/excised surgically, 18 (18%) were invasive cancers and the rest benign or atypical lesions. The invasive cancers comprised: invasive ductal carcinoma n=11 (61.11%); invasive lobular carcinoma n=5 (27.78%); invasive mammary carcinoma n=1 (5.56%) and metastatic carcinoma n=1 (5.56%). There were no DCIS. The invasive cancer grades were I: 5 (27.78%); II: 7 (38.89%); III: 4 (22.22%); and not specified: 2 (11.11%). The tumour sizes on sonography (cm) were: 0.1-0.5 cm: 1 (5.55%); 0.6-1.0 cm: 7 (38.89%); 1.1-1.5 cm: 4 (22.22%); 1.6-2.0 cm: 1 (16.67%); > 2.0 cm: 4 (16.67%) and not specified: 1 (5.55%). One patient did not undergo surgical excision because of extensive metastatic disease; of the 17 remaining patients, 4 (23.5%) had positive lymph nodes.

One study⁷² reported 8 cancers detected by supplemental ultrasound only, of which 7 were invasive cancers (6 stage I; 1 stage II; 1 had positive lymph nodes) and 1 was DCIS (stage 0); they ranged in size from 0.5 cm to 2.4 cm (median, 0.9 cm) on ultrasound. Another study⁷³ reported that supplemental ultrasound screening detected 9 additional cancers, of which 7 were invasive cancers (3 invasive ductal carcinoma; 1 invasive lobular carcinoma; 1 mixed invasive ductal/lobular carcinoma; 1 invasive apocrine carcinoma and 1 mucinous carcinoma; 3 intermediate and 4 low grade) and 2 DCIS (low grade). The median size of the 9 cancers was 8 mm, ranging from 5 to 15 mm. None had lymph nodes or distant metastases; 7/9 (77.8%) were hormone receptor (HR) positive/HER2 negative and 2/9 (22.2%) were triple negative.

One study⁷⁶ reported that supplemental ultrasound screening detected an additional 23 cancers (17 invasive ductal carcinoma, 4 invasive lobular carcinoma, 1 mixed invasive [of which 3 grade 1, 10 grade 2, 5 grade 3 and 4 N/A] and 1 DCIS [low grade]). The mean tumour size was 15.1 mm (SD 4.8 mm); range 5 to 25 mm; 15 were ER+/PR+ or ER+/PR- or ER-/PR+; 2 ER-/PR- and 6 N/A; 7 had metastases in axillary nodes; 1 had micrometastases in axillary nodes; 13 were negative for lymph node involvement and 2 were N/A. HER2 status was 3+: 1; 2+: 0; 1+: 5; 0: 9 and 8 N/A. Another study⁸² reported invasive ductal carcinoma with and without ductal carcinoma in situ: 14; invasive lobular carcinoma: 9; mixed type: 8; mucinous: 1; tubular: 1; ductal carcinoma in situ: 5; intracystic 88

or invasive papillary: 3; atypical ductal hyperplasia with papilloma: 3; lobular carcinoma in situ: 2. Of the 41 invasive cancers and DCIS, 9 were nuclear grade 1, 25 were nuclear grade 2, and 7 were nuclear grade 3; sizes ranged from 0.3 to 8.0 cm. 40 cancers had known hormonal status of which 33 were ER/PR+, 3 were ER+/PR-, one was ER-/PR+, one was ER/PR/HER+, and two were triple negative. Seven patients had positive metastatic lymph nodes. Four were in tumours that were nuclear grade 3 and were macro-metastatic and three were in tumours nuclear grade 2, one was macro-metastatic, and two were micro-metastatic. A final study⁷⁸ reported 4 additional screen-detected cancers with supplemental ultrasound: histological grades were: grade I: 2 (50.0%); grade II: 1 (25.0%) and the mean (SD) size was 21.8 (12.6) mm, range 13 to 40 mm.


Table 15 and Figure 21 show the numbers of cancers of <15mm detected in the studies where this was reported.

Study reference	Overall cancer detection rate/1000	Cancers <15mm	Cancer detection rate/1000 for cancers <15mm
71	18/5434 = 3.3 per 1000 screens	12	12/5434 = 2.2 per 1000*
73	9/3171 = 2.8/1000	9	9/3171 = 2.8 per 1000*
74	0/394 = 0/1000	0	0/394 = 0 per 1000*

Table 15: Numbers of cancers of <15mm detected

* Calculated by us

Figure 21. Cancer detection rate for cancers <15mm (per 1000)

This suggests that some studies did detect a significant rate of small (<15mm) cancers, but there were only three studies^{71,73,74} reporting the data to calculate such rates, of which one study⁷⁴ found no cancers at all.

3.3.5 Discussion

Study evidence

The results of our update review demonstrate that supplemental ultrasound can detect cancers that go undetected by mammography, including small (<15mm) cancers. Rates of additional cancer detection with supplemental ultrasound were 0 per 1000⁷⁴ to 12.3 per 1000;⁸⁰ and of small (<15mm) cancers were 0 per 1000⁷⁴ to 2.8 per 1000.⁷³ At least some of the cancers detected were of high grade and associated with positive lymph nodes. It is beneficial for mammography to detect small cancers, which without screening would present later as larger symptomatic cancers with a worse prognosis; mammography has been demonstrated to reduce the risk of mortality from breast cancer. However, it is unclear whether the additional detection by supplemental ultrasound of small, node-negative, low grade cancers (which have a good prognosis) would be beneficial in terms of reduction of mortality or reduction in the rate of interval cancers, as these lesions may represent overdiagnosis of cancers that would otherwise be found anyway at a later mammography screening round.

The sensitivity of ultrasonography for women with dense breasts with negative mammography ranged from 44%⁷⁸ to 100%^{70,73,75} and specificity ranged from 63%⁷⁰ to 100%⁸⁰. Recall rates were 9.1 per 1000⁷⁸ to 370 per 1000.⁷⁰ Of the ten studies providing data on recall rates, only two^{76,78} (the European studies) had a recall rate for ultrasound of <10%. The positive predictive value of recall (PPV₁; i.e. the likelihood of cancer among women who were recalled) ranged from 0.51%⁷⁵ to 26.7%.⁷⁸ Biopsy rates were between 7.3 per 1000⁷⁸ and 66 per 1000;⁷⁴ the lowest rates were seen in the European studies. The positive predictive value of biopsy (PPV₂; i.e. the likelihood of cancer among women who had a biopsy) ranged from 2.33%⁷⁵ to 80.8%.⁸⁰ The rate of benign biopsies (false positives) ranged from 2.9 per 1000⁸⁰ to 51 per 1000.⁷⁵

Study quality

The USPTF review found two good-quality studies but they did not meet our eligibility criteria, and one was using film mammography and the other involved high-risk women. Patient selection was at high risk of bias in five (45%) studies^{70-72,74,81} due to patients self-selecting whether or not to undergo ultrasound, and only a minority of patients took up the offer. Three (27%) studies^{71,76,81} did not follow women up for interval cancers, making it impossible to accurately assess the sensitivity of ultrasound. Most of the studies that did report sensitivity had wide confidence intervals around the estimate of the sensitivity due to small numbers of events (the sum of the true positives [TP] plus false negatives [FN] was less than 10 people in five^{70,72,73,75,78} of the seven studies providing data on sensitivity).

Study applicability

90

Key issues in terms of the evidence base reviewed are its generalisability to the UK screening population. All the studies were assessed as high concern regarding applicability due to differing populations not generalisable to the general UK screening population (the proportion of women outside the 50-70 year age range was between 33%⁸⁰ and 60%⁷⁸ in seven studies; the other four did not report this percentage, but of these, one⁷⁵ was in Korea; in two,^{74,81} only around 30% of eligible women participated, and in the other,⁷¹ 67% of participants had risk factors compared with 26% in the overall screening population). In total, four studies were conducted in Korea,^{70,72,73,75} three in the USA,^{71,74,77} one in Italy⁷⁶ and one in Sweden.⁷⁸

Consistency

Six of the seven studies with available data reported a sensitivity \geq 89%; three of studies with available data reported the specificity below 75% and three above 75%. Recall and biopsy rates were lowest in the European studies,^{76,78} with higher rates in the studies conducted in the USA or Korea.

3.3.6 Summary

Question 3: The NSC criterion 4: "There should be a simple, safe, precise and validated screening test": **Not met.**

Ultrasound can detect additional cancers among women with dense breasts and negative mammography, but estimates of sensitivity and specificity are uncertain as they are based on small numbers of events. The extra cancers detected come at the cost of high recall rates of between 9.1 to 370 per 1000, high biopsy rates of between 7.3 and 66 per 1000, and high benign biopsy rates (false positives) of between 2.9 to 51 per 1000. Variations between estimates may partly reflect the different populations and healthcare systems of the included studies. It is unclear to what extent the additional cancers represent overdiagnosis.

3.4 Key question 4 (cost-effectiveness)

Question 4. For women attending breast screening in the UK, what are the cost-consequences of adding mammographic density measurements, and then ultrasound for those found to have high mammographic breast density?


This relates to NSC criterion 14:

"The opportunity cost of the screening programme (including testing, diagnosis and treatment, administration, training and quality assurance) should be economically balanced in relation to expenditure on medical care as a whole (value for money). Assessment against this criteria should have regard to evidence from cost benefit and/or cost-effectiveness analyses and have regard to the effective use of available resource."

3.4.1 Description of the evidence

Figure 22 provides the PRISMA flow diagram for the cost-effectiveness question. We identified 228 unique records. Nineteen records were examined as full texts. Fifteen studies were excluded at full text stage; these are listed with the reason for exclusion in Appendix 3. This left four papers; one conducted in the UK⁸⁴ and three in the USA.^{80,81,85}

3.4.2 Characteristics of included studies

The included studies are described in Table 16.

Table 16. Characteristics of cost-effectiveness studies

Author (Year)	Type of economic evaluation &	Population studied	Comparators	Methods (perspective, time horizon and	Methods (costs, outcomes, ICER and sensitivity analyses)
	evaluation & model			discount rate)	
Giuliano 2013 ⁸⁰	EE: CCA Model: None – but simple theoretical calculations	Women with dense breasts in a large screening population in the United States.	Intervention: Mammography plus ultrasound Comparator: Mammography only	Study perspective: Medicare and Medicaid reimbursement Time horizon: 1 year Discount rate: Not undertaken Currency/price year: US\$, year not stated	Outcomes: additional treatment for missed cancers Costs: breast ultrasound, missed cancers, treatments ICER: cost per additional treatment for missed cancers Sensitivity analyses: Not undertaken
Gray 2017 ⁸⁴ (NB intervention also includes MRI)	EE: CUA Model: Decision- analytic model (discrete event simulation)	Women eligible for a national breast screening program (NBSP) in the UK	Intervention: Four approaches to stratified NBSP Risk 1 Risk 2 Masking - current screening approach with supplemental ultrasound offered to women with high breast density. Women with both high breast density and high risk of breast cancer were offered supplemental magnetic resonance imaging (MRI) instead of ultrasound	Perspective: National health Service Time horizon: Lifetime Discount rate: 3.5% for both costs and benefits Currency/price year: UK £ in 2015 prices	Outcomes: QALYs Costs: mammography, follow- up, biopsy, treatments, ultrasound, MRI ICER: cost per QALY gained Sensitivity analyses: One-way and probabilistic sensitivity analyses

Sprague 2015 ⁸⁵	EE: CEA Model: 3 micro- simulation models	Women eligible for breast screening in USA. Biennial screening for 50-74 year olds; Annual screening for 40-74 year olds.	Risk 1 with masking Comparator: Current UK NBSP and no screening Intervention: Mammography plus supplemental ultrasound Comparator: Mammography alone	Perspective: Federal Payer Time horizon: Lifetime Discount rate: 3% for both costs and benefits Currency/price year: US \$ in 2013 prices	Outcomes: QALYs Costs: mammography screening, ultrasound, additional imaging, biopsy, cancer treatment ICER: cost per QALY gained Sensitivity analyses: One-way sensitivity analyses
Weigert 2012 ⁸¹	EE: CCA Model: None	Women with normal mammograms but dense breasts in the USA	Intervention: Mammography plus ultrasound Comparator: Mammography alone	Perspective: Not stated Time horizon: 1 year Discount rate: Not undertaken Currency/price year: US\$, year not stated	Outcomes: Number of breast cancers detected Costs: average reimbursement by CPT-code and insurance company relating to mammograms, ultrasounds and biopsy's including staff time. ICER: Cost per breast cancer found Sensitivity analyses: Not undertaken

3.4.3 Methodological quality of included studies

All the studies described fully the interventions, findings and their limitations. Three studies reported adequately the objectives, ^{80,84,85} the time horizon, ^{81,84,85} setting/location^{81,84,85} and aspects of the population studied. ^{80,84,85} Only two^{84,85} reported fully the perspective of the study, discount rate, health outcomes used in the analysis, currency and price year for reporting costs, any assumptions made with the analysis, analytic methods used for the reporting the results, results reported as incremental costs and outcomes, the source of funding; whilst in the other two studies^{80,81} these were reported partially or not at all (see Figure 23).

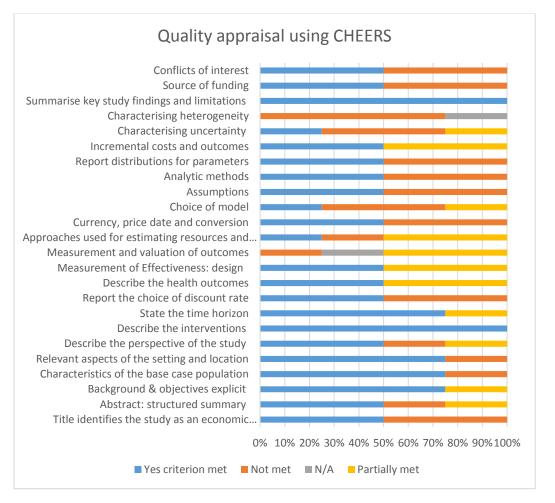


Figure 23. Quality assessment of included studies for question 4

3.4.4 Analysis of the evidence

A recent cost-utility study⁸⁴ conducted in the UK found that the current screening approach plus supplemental ultrasound offered to women with high mammographic breast density (defined using VDG3 and VDG4), with ultrasound and MRI for women at high risk, does not appear to be a cost-effective alternative when compared with the current UK National Breast Screening Programme (NBSP):

• ICER vs. No screening (3.5% DR): £30,772 per QALY gained

- ICER vs. UK NBSP (3.5% DR): £212,947 per QALY gained
- ICER vs. No screening (1.5% health, 3.5% costs DR): £15,065 per QALY gained
- ICER vs. UK NBSP (1.5% health, 3.5% costs DR): £105,412 per QALY gained.

As this was the only UK study, it was analysed in depth (see Table 17).

Table 17. Analysis of the UK cost-effectiveness study

Reference	Gray 2017 ⁸⁴				
Interventions and	Interventions				
comparators	Risk 1: a risk-based stratification defined by the risk algorithm plus density and texture measures. Three strata (with associated screening				
	intervals) were defined by 10-y risks of breast cancer of 1) <3.5% (3-yearly), 2) 3.5%–8% (2-yearly), and 3) >8% (annually)				
	Risk 2 : a risk-based stratification defined by the same algorithm as risk 1 but with strata defined by dividing the population into thirds on the				
	basis of 10-y risk (tertiles): 1) the lowest risk tertile (3-yearly), 2) the middle tertile (2-yearly), and 3) the highest risk tertile (annually)				
	Masking (covering up of tumors in mammograms by dense breast tissue): current screening approach with supplemental ultrasound offered				
	to women with high breast density, defined using Volpara density grade 3 or 4. High risk was defined as >8% 10-y risk of breast cancer.				
	Women with both high breast density and high risk of breast cancer were offered supplemental magnetic resonance imaging instead of				
	ultrasound.				
	Risk 1 with masking : the risk 1 stratification approach together with the strategy described in the masking approach				
	Comparators				
	Current UK NBSP: women between 50 and 70 y with screening every 3y using mammography				
	No screening: no use of mammography in the population for screening purposes; all cancers would present with clinical signs or symptoms				
Research question	To identify the incremental costs and consequences of stratified national breast screening programs (stratified NBSPs) and key drivers of				
	relative cost-effectiveness.				
Study type	Cost-effectiveness analysis				
Study population	Women eligible for an NBSP. Mean +/- SD age (y): base case 48.93 +/- 1.09				
Institutional setting	National health care service (NHS)				
Country/currency	United Kingdom/£. National currency (£) at 2014 prices				
Funding source	Part of a European collaborative project called Adapting Breast Cancer Screening Strategy Using Personalised Risk Estimation (ASSURE). The				
	ASSURE project was funded from a collaborative project grant within the FP7-HEALTH-2012- INNOVATION-1 call (project number: 306088).				
Analytical perspective	NHS				
Effectiveness	Multiple data sources were used: systematic reviews of effectiveness and utility and cohort studies embedded in existing NBSPs.				
parameters	Mammography and ultrasound sensitivity/specificity etc, interval cancers, survival and effectiveness of MRI referenced.				
	Mammography				
	 Sensitivity by tumor size modelled as logistic-type function 				
	 β1: sets increase with size 1.47 				
	 β2: sets sensitivity relative to size 6.51 				

	Maximum sensitivity 0.95%			
	 Sensitivity by VDG, used to calculate relative sensitivity given tumor size 			
	Sensitivity VDG1 85.0%			
	Sensitivity VDG2 77.6%			
	Sensitivity VDG3 69.0%			
	Sensitivity VDG4 58.6%			
	Recall rate 4.0 per 100 examinations			
	False-positive biopsy proportion 2.4%			
	 Proportion of screen-detected cancers that are DCIS 20.3% 			
	Clinically detected (interval cancers)			
	Cancer size at clinical detection, mean 6.5 doublings (22.62mm)			
	Cancer size at clinical detection, SD 0.535 doublings			
	Survival after breast cancer diagnosis			
	• γ NPI 1 -5.413			
	• γ NPI 2 -4.023			
	• γ NPI 3 -2.465			
	 γ Advanced cancer, age <50 y -0.527 			
	 γ Advanced cancer, age 50–69 y -0.537 			
	• γ Advanced cancer, age \geq 70 y -0.849			
	US cancer detection			
	 VDG3/4 incremental cancers detected with supplemental US 3 per 1000 examinations 			
	False-positive (recall) rate, US 98 per 1000 examinations			
	Biopsy rate, US 0.4% Assumed same as mammography			
	 Proportion cancers detected by supplemental US that are DCIS 21% Assumed same as mammography 			
1	MRI cancer detection			
	 VDG3/4 incremental cancers detected with supplemental US 5 per1000 examinations 			
	False-positive (recall) rate, MRI 41.15 per 1000 examinations			
	Biopsy rate, MRI 3.03%			
	 Proportion of cancers detected by supplemental MRI that are DCIS 14.3% 			
Intervention costs	Multiple data sources were used: published studies reporting costs, and cohort studies embedded in existing NBSPs.			

	Cost data referenced plus expert opinion.				
	Costs				
	Mammography £54				
	• Follow-up, mean £95				
	 Biopsy, mean £160 				
	 NPI 1 treatment, mean £11,630 				
	 NPI 2 treatment, mean £12,978 				
	 NPI 3 treatment, mean £15,405 				
	 Advanced cancer, mean £23,449 				
	 Screening ABUS £80 				
	Screening HHUS £80				
	 Screening MRI £220 				
	 Stratification process £10.57 				
Indirect costs	Costs to individual women were excluded from the analysis				
Health-state	Multiple data sources were used: systematic reviews of effectiveness and utility, and cohort studies embedded in existing NBSPs.				
valuations/utilities	Utilities referenced				
	Utility				
	Early breast cancer, first year 0.696				
	Early breast cancer, subsequent years 0.779				
	Advanced breast cancer, first year 0.685				
	Advanced breast cancer, subsequent years 0.685				
Modelling	A decision-analytic model (discrete event simulation).				
	A <i>de novo</i> model was developed.				
	The conceptualisation process identified that the model required three components to represent: the stratification approach, breast cancer				
	natural history with screening, and the diagnosis and treatment process after a cancer detected by screening. A discrete event simulation				
	(DES) model was used to represent these three components.				
Transition probabilities	Extensive definitions of various parameters/equations used; also referenced to supplementary material				
for model					
Time horizon	Lifetime				

Discount rates applied in	3.5% for both costs an	d benefits (base case)		
the model for costs and	3.5% for costs and 1.5% for benefits (sensitivity analysis)				
outcomes					
Results/analysis:	QALYs				
Measure of benefit					
reported					
Clinical	Screening program	QALYs (3.5% disco	ount rate) Cost (£,2015	i; 3.5% DR)	
outcome/benefits	No screening	17.6919	246		
estimated for each	Current UK NBSP	17.7095	654		
intervention/strategy	Risk 1	17.7119	694		
	Risk 2	17.7181	858		
	Masking	17.7102	809		
	Risk 1 and masking	17.7124	870		
Synthesis of costs and	Screening program ICE	R vs. No screening (3	3.5% DR) UK NBSP (3.59	% DR) No screening (1.5% h	ealth, 3.5% costs) UK NBSP (1.5% health, 3.5%
benefits	costs)				
	No screening	NA	NA	NA	NA
	Current UK NBSP	£23,197	NA	£11,343	NA
	Risk 1	£22,413	£16,689	£11,363	£11,565
	Risk 2	£23,435	£23,924	£11,425	£11,592
	Masking	£30,772	£212,947	£15,065	£105,412
	Risk 1 and masking	£30,532	£75,254	£14,707	£33,199
	DR = discount rate				
	Masking and risk 1 and masking were dominated by the next alternative (current NBSP and risk 1 stratified NBSP, respectively). The ICERs for the remaining comparisons were £23,197 per QALY for the current NBSP compared with no screening, £16,689 per QALY for risk 1 stratified NBSP compared with masking and risk 1 stratified NBSP. The risk 1 and risk 2 stratified NBSPs were relatively cost-effective when compared with the current UK NBSP. The masking stratified NBSP does not appear to be a cost-effective alternative when compared with the current UK NBSP. When compared with no screening, all screening programs may be considered cost-effective.				
Statistical analysis	Not shown				
Statistical allarysis					

Sensitivity analysis	One-way sensitivity analyses were used to explore the impact of selected input parameters (referenced to supplementary material). Probabilistic sensitivity analysis (PSA) was performed to quantify the effect of the joint uncertainty.
Scenarios tested in sensitivity analysis	Input parameters and discount rates were varied
Results of the sensitivity analysis	Using an alternative discounting rate of 3.5% for costs and 1.5% for benefits resulted in relatively lower estimated incremental cost- effectiveness ratios (ICERs) for all stratified NBSPs compared with the UK NBSP.
	One-way sensitivity analysis showed that the reported total costs, total QALYs, and ICERs were sensitive to natural history parameter values (α 2 and mean tumour size at clinical detection) and screening performance of mammography (β 2). ICERs for stratified programs were moderately sensitive to the cost of stratification although costs would need to be several times the base-case value for ICERs to increase beyond a threshold of £30,000 per QALY. In all alternative programs, total costs were sensitive to the treatment cost parameters; varying these parameters, however, did not greatly change the ICERs compared with the base case. Estimates of total QALYs were sensitive to the utility weights for cancer states; varying utility weights moderately altered the ICERs of stratified programs compared with the NBSP. The results were relatively insensitive (within the ranges tested) to the probability of recall, costs of MRI, the relative sensitivity of mammography by VDG group, and US/MRI additional cancer detection rate.
Conclusions/implications	A risk stratified NBSP is potentially a cost-effective use of health care resources when compared with the current UK NBSP.
Implications of the	This early model-based cost-effectiveness analysis provides indicative evidence for decision makers to understand the key drivers of costs
evaluation for practice	and QALYs for exemplar stratified NBSP. Key drivers of cost-effectiveness were discount rate, natural history model parameters, mammographic sensitivity, and biopsy rates for recalled cases. A key assumption was that the risk model used in the stratification process was perfectly calibrated to the population.

The first study in the USA⁸¹ used a cost-consequence analysis and reported that using costs of \$250 (approximate £ equivalent at 22 February 2018: £179) per ultrasound and \$2,400 (approximate £ equivalent £1,719) per ultrasound-guided biopsy, the cost per breast cancer found was estimated to be \$110,241 (approximate £ equivalent £78,940). However, they reported few details of their assumptions and analytical methods. The second study in the USA⁸⁰ used theoretical calculations and found that the cost differential for additional treatment between Stage 1 and Stage 2 breast cancer was \$10,467 (approximate £ equivalent £7,495). They also reported that the cost-benefit of early detection of stage 1 disease results in annual capital cost savings of \$22.75 (approximate £ equivalent £16.29) per screened patient in the USA population, according to their model. However, they did not present details of their assumptions or analytical model, or any actual or derived data to support improved breast cancer mortality with the addition of ultrasound. The third study in the USA⁸⁵ (which met the majority of the CHEERS quality criteria) used three micro-simulation models and the authors reported that supplemental ultrasound screening for women with dense breasts undergoing screening mammography would substantially increase costs while producing relatively small benefits in terms of breast cancer deaths averted and QALYs gained. The ICER was \$325,000 (approximate £ equivalent £232,723) per QALY gained for women with heterogeneously or extremely dense breasts (biennial screening). Restricting supplemental ultrasound screening to women with extremely dense breasts the ICER was \$246,000 (approximate £ equivalent £176,153) per QALY gained (biennial screening). For annual screening the ICERs were even higher than biennial screening.

3.4.5 Discussion

Study evidence

Only the UK study⁸⁴ was designed as a cost-effectiveness analysis; the authors collected and reported the required information for an economic evaluation, and concluded that supplemental screening was not cost-effective. The USA study⁸⁵ meeting the majority of the CHEERS criteria reported that supplemental ultrasound screening for women with dense breasts undergoing screening mammography would substantially increase costs while producing relatively small benefits in terms of breast cancer deaths averted and QALYs gained. The other two studies from the USA^{80,81} provided insufficient details to fully evaluate their findings.

Study quality

On the CHEERS checklist, the UK study⁸⁴ met 16 of the 24 quality criteria, and one of the studies conducted in the USA⁸⁵ met 17 of the 24 criteria. The other two studies conducted in the USA met only four⁸⁰ and five⁸¹ of the 24 criteria.

Study applicability

The intervention in the UK study⁸⁴ included not only ultrasound screening for women with dense breasts but also MRI screening for women at high risk, so the cost-effectiveness of the ultrasound component only cannot be properly established. The other three studies^{80,81,85} reflect the healthcare system in the USA.

Consistency

The two studies^{84,85} meeting the majority of the CHEERS criteria both suggest that supplemental ultrasound is not cost-effective.

3.4.6 Summary

Question 4: NSC criterion 14. "The opportunity cost of the screening programme (including testing, diagnosis and treatment, administration, training and quality assurance) should be economically balanced in relation to expenditure on medical care as a whole (value for money). Assessment against this criterion should have regard to evidence from cost-benefit and/or cost-effectiveness analyses and have regard to the effective use of available resource": **Not met.**

There is insufficient evidence for cost-effectiveness of supplemental ultrasound, and the available evidence suggests that it is not currently cost-effective.

Section 4: Discussion

4.1 Evidence and assessment of NSC screening criteria

We examined five key questions relating to ultrasound as an add-on test after negative mammography screening in women with dense breasts:

1. What are the reliability and concordance of available methods to measure mammographic breast density? (NSC criterion 4)

2a. Is mammographic breast density a risk factor for cancers being missed during screening (masking on mammograms/false negatives/interval cancers)? (NSC criterion 1)

2b. Is mammographic breast density a risk factor for developing breast cancer? (NSC criterion 1)

3. What is the test accuracy of ultrasound following mammography in comparison to mammography to detect cancer in women with dense breasts? (NSC criterion 4)

4. For women attending breast screening in the UK, what are the cost-consequences of adding mammographic density measurements, and then ultrasound for those found to have high mammographic breast density? (NSC criterion 14)

For key question 1, even allowing for the expected changes in density over time, we found wide variation in density assessment within and between readers for visual methods. Semi-automated methods are more consistently reliable than visual methods in research settings, but similar high inter-reader reliability values may not be reproduced in clinical screening practice. With automated volumetric mammographic breast density measurements, a more consistent density assessment of serial screening mammograms was observed than with the density assessment performed by trained clinicians. However, automated methods such as Volpara and Quantra differ from each other; concordance between methods is not generally high as they define density in different ways and there is no gold standard applicable to all breast density measurements. While MRI has been suggested as a type of gold standard, discrepancies occur between breast density measurement methods and this gold standard, particularly at higher densities.¹⁰

For key question 2a all the studies found a reduced sensitivity of mammography and/or an increased risk of interval cancers with increasing mammographic breast density. Of the systematic reviews we included in question 2b, the strength of the association between mammographic breast density and risk of breast cancer and the consistency of results between studies using varying methods, designs and locations suggests that mammographic breast density is an independent risk factor for breast cancer.

For key question 3 we found that ultrasound can detect additional cancers among women with dense breasts and negative mammography (rates of additional cancer detection with ultrasound were 0 per 1000 to 7.1 per 1000, and of small [<15mm] cancers were 0 per 1000 to 2.8 per 1000). At least some of the cancers detected were of high grade and associated with positive lymph nodes. It is beneficial for mammography to detect small cancers, which without screening would present later as larger symptomatic cancers with a worse prognosis; mammography has been demonstrated to

reduce the risk of mortality from breast cancer. However, it is unclear whether the additional detection by supplemental ultrasound of small, node-negative, low grade cancers (which have a good prognosis) would be beneficial in terms of reduction of mortality or reduction in the rate of interval cancers, as these lesions may represent overdiagnosis of cancers that would otherwise be found anyway at a later mammography screening round. Sensitivity of additional ultrasound ranged from 44% to 100% and specificity from 63% to 100%. The extra cancers detected came at the cost of high recall rates of between 9.1 to 370 per 1000 (only 20% of the studies providing data on recall rates had a recall rate for ultrasound below 10%). The positive predictive value of recall (PPV₁) ranged from 0.51% to 26.7%. Biopsy rates were between 7.3 and 66 per 1000, and the positive predictive value of biopsy (PPV₂) ranged from 2.33% to 80.8%. The rate of benign biopsies (false positives) ranged from 2.9 to 51 per 1000.

For key question 4 we found only 4 eligible papers; one conducted in the UK and three in the USA. Only the UK study was designed as a cost-effectiveness analysis, but the intervention in that study included not only ultrasound screening for women with dense breasts but also MRI screening for women at high-risk, so the cost-effectiveness of the ultrasound component alone cannot be properly established. There is insufficient evidence for cost-effectiveness of supplemental ultrasound, and the available evidence suggests that it is not currently cost-effective.

NSC criterion	Our questions	Met/	Key reasons
	addressing this criterion	not	
		met?	
Criterion 1: There should be	Question 2a. Is	Met	Strong consistent association
robust evidence about the	mammographic breast		between mammographic
association between the risk	density a risk factor for		breast density and risk of
or disease marker and serious	cancers being missed		breast cancer.
or treatable disease	during screening		Consistent finding of reduced
	(masking on mammograms/ false		sensitivity of mammography and/or increased risk of
	negatives/ interval		interval cancers with
	cancers)?		increasing mammographic
	Question 2b. Is		breast density.
	mammographic breast		
	density a risk factor for		
	developing breast		
	cancer?		
Criterion 4: There should be a	Question 1: What are	Not	It is difficult to validate the
simple, safe, precise and	the reliability and	met	density methods when there
validated screening test	concordance of available		is no gold standard applicable
	methods to measure		to all breast density
	mammographic breast		measurements, concordance
	density?		between methods is low, and
	Question 3. What is the		even automated methods are
	test accuracy of		not interchangeable.
	ultrasound following		Ultrasound is not precise
	mammography in		because it leads to large
100	comparison to		numbers of false positives,

	mammography to detect cancer in women with dense breasts?		and while it can detect additional cancers not found on mammography, we do not have evidence on whether this reduces interval cancers in the screening programme or mortality, or to what extent this represents
Criterion 14: The opportunity cost of the screening programme (including testing, diagnosis and treatment, administration, training and quality assurance) should be economically balanced in relation to expenditure on medical care as a whole (value for money). Assessment against this criterion should have regard to evidence from cost-benefit and/or cost-effectiveness analyses and have regard to the effective use of available resource	Question 4. For women attending breast screening in the UK, what are the cost- consequences of adding mammographic density measurements, and then ultrasound for those found to have high mammographic breast density?	Not met	overdiagnosis. There is insufficient evidence for cost-effectiveness of supplemental ultrasound, and the available evidence suggests that it is not currently cost-effective.

Although not systematically investigated in this review, some evidence relating to other NSC was identified, including:

Criterion 5. The distribution of test values in the target population should be known and a suitable cut-off level defined and agreed.

The data here relate to women with heterogeneously or extremely dense breasts (BIRADS categories 3 and 4), whereas if a cut-off level were chosen only including women with extremely dense breasts (BIRADS 4), different values would be obtained, e.g. for sensitivity of ultrasound. Estimating cost-effectiveness at different density thresholds might be practical and worthwhile.

Criterion 9. There should be an effective intervention for patients identified through screening, with evidence that intervention at a pre-symptomatic phase leads to better outcomes for the screened individual compared with usual care.

Data are currently lacking on the benefit to the individual of earlier intervention after mammographic breast density assessment and ultrasound screening, as the proportion of cases which are reducing interval cancers or overdiagnosis is not known.

Criterion 11. There should be evidence from high quality randomised controlled trials that the screening programme is effective in reducing mortality or morbidity.

There is no RCT evidence of supplemental ultrasound reducing mortality, and such studies might not be realistic. However, RCTs might be justifiable examining reductions in morbidity (interval cancers) using mammographic breast density assessment and supplemental ultrasound with a longer follow up and more screening rounds.

Criterion 13. The benefit gained by individuals from the screening programme should outweigh any harms, for example from overdiagnosis, overtreatment, false positives, false reassurance, uncertain findings and complications.

It is unclear whether the benefits outweigh the harms, particularly due to the high rate of false positives, and the possibility of overdiagnosis and overtreatment.

Criterion 18. Adequate staffing and facilities for testing, diagnosis, treatment and programme management should be available prior to the commencement of the screening programme.

Introducing density assessment and supplemental ultrasound would require additional facilities in terms of personnel and equipment for screening, and there would also be an effect on the number of biopsy samples requiring laboratory processing. Visual density assessment methods show a strong relationship between density and cancer, despite inter-observer variability, but may be impractical for population-based screening; automated methods are likely to be more practical for risk stratification. Logistical challenges could include the inherent risk of increasing the complexity of the screening pathway by separating off a cohort of women for additional tests, and the need to update the National Breast Screening Service (NBSS) system to record density data. Of note, the American College of Radiology recently (November 2017) updated its statement⁸⁶ on the reporting of breast density in mammography reports and patient summaries, which now includes the following: "Supplemental screening should be a thoughtful choice after a complete risk assessment, not an automatic reaction to breast density itself."

Recent publications also suggest that automated breast density measures may contribute to risk stratification, and more accurate risk prediction could enable better targeting of risk-reducing interventions e.g. lifestyle modification.²¹ For example, among women participating in the "Predicting Risk of Cancer at Screening" (PROCAS) study, Volpara density grades predicted subsequent cancer even after adjustment for other personal and familial risk factors (adjusted odds ratio 3.00, 955 Cl 1.54 to 5.86 for Volpara density grade 4 versus grade 1).²¹ Therefore density assessment may be valuable as part of a holistic risk assessment, rather than as an automatic gateway to supplemental ultrasound screening. Another recent publication compared Volpara and Quantra versus MRI, and found that while percent breast density can be accurately measured using automated volumetric software programs, values should not be used interchangeably between methods.¹⁰ Other authors have noted that moving towards a standardised assessment of mammographic breast density for clinical applications would be hugely complex, and involve consideration of how consistent the method is across X-ray systems, modalities and over time, as well as how feasible the method is in terms of integration into health information technology systems and clinical practice.²⁰ The UK NHSBSP screens over two million women per year and

authors in the UK have noted that in order to be practicable, any breast composition risk marker would have to be fully-automated with minimal human resource implications.⁸⁷

Other authors have recently concluded that most women with dense breasts and no other risk factors are likely to experience more harms than benefits with supplemental screening ultrasonography.⁸⁸ Other barriers to the wider use of ultrasound in screening might include the need for trained technologists or physicians to perform and interpret scans.⁸⁹ Particular issues are that every normal breast has a different and unique ultrasound appearance; there are no consistent and reproducible landmarks except the nipple, pectoralis muscle and axilla; and small or subtle cancers may blend in with fibrocystic changes; ultrasound therefore requires a highly skilled and experienced technologist.⁸⁹

4.2 Strengths and limitations

We conducted a systematic review for each of the key questions. We searched four databases, date limits were applied, and only articles in the English language were included; therefore it is possible that relevant articles might have been missed by this strategy, although search terms were broad. We included a wide scope of questions including cost-effectiveness. We built on a recent review of the relevant literature and used a systematic approach to the design of our search strategies and to inclusion and exclusion and quality assessment. Sifting and data extraction were performed by two reviewers. We performed thorough quality appraisal in duplicate; no studies were excluded on grounds of quality.

An adequate number of studies were found for question 1 but we found no multi-centre studies that included representative samples of women and raters, plus tests within a 2-year time-frame. We did not include all methods of density measurement; we excluded older methods which have been superseded, however, other methods may predict cancer (e.g. visual analogue scales),²¹ but these were not prioritised by the advisory group prior to finalising the protocol. A limitation of the quality assessment tool used for the studies in question 1 is that five of the eleven questions relate to blinding, with studies marked down for a lack of blinding, which may be important for research studies, but in real-world screening practice, readers would not be blinded to previous assessment of density or clinical information, and therefore real-world studies would be inappropriately graded as lower quality. Another limitation of research studies may be their design for readers to focus all their attention on breast density, making density the most important finding on the mammograms, which is not the case in real practice in which density is usually a secondary focus of attention.

It should be noted that our review was designed to apply to the general screening populations (which will include a proportion of high-risk women) but we excluded studies performed solely in high-risk women. The rationale for excluding papers on non-screening populations for question 1 (performance of the density measures during screening) was that there are reasons to believe that women in diagnostic/mixed population studies would not be representative of women who participate in screening (e.g. by distribution of breast density or age). We included 28 studies in the review for question 1; the largest one included 83 readers and mammograms from 87,066 women. These appear to give us a good sense of the performance of the density measures. However, diagnostic/mixed population studies could provide additional useful information about density

measures in general. And density screening with ultrasound may be a reasonable strategy as part of a programme of care for high-risk women.

An adequate number of studies were found for question 2. However, in question 2a, none of the studies we found were at low-risk of bias. Question 2b was covered by several systematic reviews; however, they covered limited populations (Asian women only) or focused on cancer subtypes (HER2 over-expression or estrogen receptor positivity), or did not report the population covered or other details of the included or excluded studies so scored poorly on AMSTAR quality criteria. We did not duplicate the USPTF systematic review but we built on that work by conducting an update, using similar search terms and quality assessment tools. However, full details of these methods were not available so relied on interpretation of the information that was present in the report. We complemented this method by carrying out our own quality assessment using the QUADAS-2 tool on both our update papers and also the original papers included in the USPTF review did not match our inclusion criteria (e.g. they included film mammography as well as digital). There were no good-quality studies in the question 3 update to the USPTF review – the authors of that review also noted the poor quality of the evidence base.

We found only four studies eligible for question 4, including only one fully-published UK costeffectiveness study.

4.3 Conclusion/general interpretation of the results in the context of other evidence, and implications for policy, practice and future research

There is strong and consistent evidence both that dense breasts increase the risk of breast cancer and decreases the sensitivity of mammography to detect cancers. Given that mammographic breast density is a risk factor for development of breast cancer (question 2b), and that breast cancer may be missed by mammography in women with dense breasts (question 2a), women with dense breasts may require supplementary screening over and above the mammography offered to women without this risk factor. For this to be feasible, it would require a) a reliable method of mammographic breast density assessment (question 1) and b) a supplementary test that was sensitive, specific, accurate (question 3) and cost-effective (question 4).

The studies included in question 1 found that overall, there is variation in density assessment within and between readers for visual assessment methods. Objective automated methods appear to be more reliable, although there is insufficient high-quality evidence to support this. Automated methods are not equivalent to each other. In question 3, we found that supplemental ultrasound can detect additional cancers in women with negative mammography and dense breasts, but at a cost of additional false-positives and unnecessary biopsies. Further it is not known if the additional cancers represents overdiagnosis. In question 4, we found that cost-effectiveness studies from the US and the UK concluded that supplementary ultrasound in all women with heterogeneously or 110 extremely dense breasts does not appear to be cost-effective. Focusing on women with extremely dense breasts only would be more cost-effective than including women with heterogeneously dense breasts also.

Implications for research

The implications for research include the need for:

• Assessment of methods of measuring mammographic breast density which offer consistency, reliability and validity within a general screening population, which have a proven strong relationship to both risk of cancer and risk of masking and which are practical in terms of scale up into the screening programme. This is required alongside

• stronger evidence for benefits in terms of reduction in interval cancers or breast cancer mortality from supplemental ultrasound after mammographic breast density assessment.

• A randomised controlled trial including cost-effectiveness assessment would provide the necessary answers to the question of whether density assessment followed by ultrasound for women with dense breasts would be clinically and cost effective within the screening programme. Follow up long enough to assess the different types of cancer found, along with any reductions in interval cancers, would be required in order to address the issue of potential overdiagnosis. However there are challenges to performing such a trial including "contamination" between clusters and potentially very high costs. In addition screening technology continues to evolve.⁸⁹

Implications for practice

The implication for practice is that if density assessment followed by supplementary ultrasound screening were undertaken in the current NHS breast screening programme, women could be categorised differently between readers or screening occasions unless a standardized programme-wide method of density assessment were used. Such a programme however could lead to increased anxiety and resource use (for women identified as at higher risk who might not actually be at higher risk), and to confusion for women whose categorization changed. Our review suggests that the numbers of false positives and additional biopsies are unlikely to be justified, and that there is as yet no clear cost effectiveness evidence to balance the benefits, harms and costs.

Section 5: Conflict of interest and funding statement

Funding: NSC

The authors have no conflict of interest to declare.

The commissioners gave feedback on the study protocol but had no role in the collection, analysis or interpretation of data, or in the writing of the report.

Team members' contributions

The Division of Health Sciences is located within Warwick Medical School. Warwick Medical School brings together experts in clinical and cost effectiveness reviewing, medical statistics, health economics and modelling. All team members checked and agreed to the final version of the report. The team that carried out the work were:

Name: Dr Jacoby Patterson

Address: Division of Health Sciences, Warwick Medical School, Gibbet Hill, Coventry, CV4 7AL Contribution: Protocol development, assessment for eligibility, quality assessment of studies, data extraction, and report writing

Name: Dr Chris Stinton

Address: Division of Health Sciences, Warwick Medical School, Gibbet Hill, Coventry, CV4 7AL Contribution: Protocol development, assessment for eligibility, quality assessment of studies, data extraction, and report writing

Name: Dr Lena Alkhudairy

Address: Division of Health Sciences, Warwick Medical School, Gibbet Hill, Coventry, CV4 7AL Contribution: Assessment for eligibility, quality assessment of studies, data extraction, commenting on the draft report and final version of the report

Name: Dr Amy Grove

Address: Division of Health Sciences, Warwick Medical School, Gibbet Hill, Coventry, CV4 7AL Contribution: Assessment for eligibility, quality assessment of studies, data extraction, commenting on the draft report and final version of the report

Name: Dr Pam Royle

Address: Division of Health Sciences, Warwick Medical School, Gibbet Hill, Coventry, CV4 7AL Contribution: Database searches and procurement of articles, commenting on the draft report and final version of the report

Name: Hannah Fraser

Address: Division of Health Sciences, Warwick Medical School, Gibbet Hill, Coventry, CV4 7AL Contribution: Administration and liaison; data extraction checking and article procurement, commenting on the draft report and final version of the report

Name: Dr Hema Mistry

Address: Division of Health Sciences, Warwick Medical School, Gibbet Hill, Coventry, CV4 7AL Contribution: Assessment for eligibility, quality assessment of studies, data extraction, commenting on the draft report and final version of the report

Name: Payagalage Senaratne

Address: Division of Health Sciences, Warwick Medical School, Gibbet Hill, Coventry, CV4 7AL Contribution: Assessment for eligibility, quality assessment of studies, data extraction, commenting on the draft report and final version of the report

Name: Prof Aileen Clarke

Address: Division of Health Sciences, Warwick Medical School, Gibbet Hill, Coventry, CV4 7AL Contribution: Overseeing project and report writing, commenting on the draft report and final version of the report

Name: Dr. Sian Taylor-Phillips

Address: Division of Health Sciences, Warwick Medical School, Gibbet Hill, Coventry, CV4 7AL Contribution: Overseeing project and report writing

REFERENCES

1. NHS Breast Screening Programme. Quality Assurance Guidelines for Breast Cancer Screening Radiology. Publication No 59. 2011.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/470579/nhsbsp59 _____QA_radiology_uploaded_231015.pdf

2. Cancer Research UK. Breast cancer statistics: breast cancer incidence (invasive). 2017. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer#heading-Zero.

3. Falcon S, Williams A, Weinfurtner J, Drukteinis J. Imaging Management of Breast Density, a Controversial Risk Factor for Breast Cancer. *Cancer Control* 2017; **24**(2): 125-36.

4. Brentnall AR, Harkness EF, Astley SM, et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. *Breast Cancer Research* 2015; **17**(1): 147.

5. Cancer Research UK. Breast cancer diagnosis and treatment statistics: Routes to diagnosis of breast cancer. 2016. <u>http://www.cancerresearchuk.org/health-professional/cancer-</u>

<u>statistics/statistics-by-cancer-type/breast-cancer/diagnosis-and-treatment#heading-Seven</u>.
Howell A, Astley S, Warwick J, et al. Prevention of breast cancer in the context of a national breast screening programme. *Journal of Internal Medicine* 2012; **271**(4): 321-30.

7. Wanders JO, Holland K, Veldhuis WB, et al. Volumetric breast density affects performance of digital screening mammography. *Breast Cancer Research & Treatment* 2017; **162**(1): 95-103.

8. Holmberg L, The Working Party for Higher-Risk Breast Screening. Report of the Working Party for Higher Risk Breast Screening 2015.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/442491/reportworking-party-higher-risk-breast-screening.pdf (accessed.

9. Eng A, Gallant Z, Shepherd J, et al. Digital mammographic density and breast cancer risk: a case-control study of six alternative density assessment methods. *Breast Cancer Research* 2014; **16**(5): 439.

10. Rahbar K, Gubern-Merida A, Patrie JT, Harvey JA. Automated Volumetric Mammographic Breast Density Measurements May Underestimate Percent Breast Density for High-density Breasts. *Acad Radiol* 2017; **24**(12): 1561-9.

11. D'Orsi C, Sickles E, Mendelson E, Morris E. ACR BI-RADS Atlas: Breast Imaging Reporting and Data System. 5th ed. Reston, VA: American College of Radiology; 2013.

12. Irshad A, Leddy R, Ackerman S, et al. Effects of Changes in BI-RADS Density Assessment Guidelines (Fourth Versus Fifth Edition) on Breast Density Assessment: Intra- and Interreader Agreements and Density Distribution. *AJR American Journal of Roentgenology* 2016; **207**(6): 1366-71.

13. van der Waal D, den Heeten GJ, Pijnappel RM, et al. Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting. *PLoS ONE [Electronic Resource]* 2015; **10**(9): e0136667.

 Jeffers AM, Sieh W, Lipson JA, et al. Breast Cancer Risk and Mammographic Density Assessed with Semiautomated and Fully Automated Methods and BI-RADS. *Radiology* 2017; 282(2): 348-55.
 Llobet R, Pollan M, Anton J, et al. Semi-automated and fully automated mammographic

density measurement and breast cancer risk prediction. *Computer Methods & Programs in Biomedicine* 2014; **116**(2): 105-15.

16. Lobbes MB, Cleutjens JP, Lima Passos V, et al. Density is in the eye of the beholder: visual versus semi-automated assessment of breast density on standard mammograms. *Insights Into Imaging* 2012; **3**(1): 91-9.

 Conant EF, Keller BM, Pantalone L, Gastounioti A, McDonald ES, Kontos D. Agreement between Breast Percentage Density Estimations from Standard-Dose versus Synthetic Digital Mammograms: Results from a Large Screening Cohort Using Automated Measures. *Radiology* 2017; 283(3): 673-80.

18. Destounis S, Johnston L, Highnam R, Arieno A, Morgan R, Chan A. Using Volumetric Breast Density to Quantify the Potential Masking Risk of Mammographic Density. *AJR American Journal of Roentgenology* 2017; **208**(1): 222-7.

19. Ekpo EU, McEntee MF, Rickard M, et al. QuantraTM should be considered a tool for twograde scale mammographic breast density classification. *British Journal of Radiology* 2016; **89**(1060): 20151057.

20. Destounis S, Arieno A, Morgan R, Roberts C, Chan A. Qualitative Versus Quantitative Mammographic Breast Density Assessment: Applications for the US and Abroad. *Diagnostics* 2017; **7**(2): 31.

21. Astley SM, Harkness EF, Sergeant JC, Warwick J, Stavrinos P. A comparison of five methods of measuring mammographic density: a case-control study. *Breast Cancer Research* 2018; **20**(10).

22. Sprague BL, Conant EF, Onega T, et al. Variation in Mammographic Breast Density Assessments Among Radiologists in Clinical Practice: A Multicenter Observational Study. *Annals of Internal Medicine* 2016; **165**(7): 457-64.

23. Burton A, Maskarinec G, Perez-Gomez B, et al. Mammographic density and ageing: A collaborative pooled analysis of cross-sectional data from 22 countries worldwide. *PLoS Med* 2017; **14**(6): e1002335.

24. Bailey S, Sigal B, Plevritis S. A Simulation Model Investigating the Impact of Tumor Volume Doubling Time and Mammographic Tumor Detectability on Screening Outcomes in Women Aged 40–49 Years. *J Natl Cancer Inst* 2010; **102**(16): 1263-71.

25. Melnikow J, Fenton JJ, Whitlock EP, et al. A Systematic Review for the U.S. Preventive Service Task Force U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews, Report No.: 14-05201-EF-3. *Agency for Healthcare Research and Quality (US)* 2016; **Supplemental Screening for Breast Cancer in Women With Dense Breasts**: A Systematic Review for

the U.S. Preventive Service Task Force U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews, Report No.: 14-05201-EF-3.

26. American College of Radiology. ACR statement on reporting breast density in mammography reports and patient summaries. 2012. <u>www.acr.org/About-Us/Media-Center/Position-Statements-Folder/Statement-on-Reporting-Breast-Density-in-Mammography-Reports-and-Patient-Summaries</u>.

27. Public Health England. Requirements for UK NSC evidence summaries. 2016. https://www.gov.uk/government/publications/uk-nsc-evidence-review-process/appendix-frequirements-for-uk-nsc-evidence-summaries

28. Public Health England. Criteria for appraising the viability, effectiveness and appropriateness of a screening programme 2015. <u>https://www.gov.uk/government/publications/evidence-review-criteria-national-screening-programmes/criteria-for-appraising-the-viability-effectiveness-and-appropriateness-of-a-screening-programme.</u>

29. Lucas N, Macaskill P, Irwig L, et al. The reliability of a quality appraisal tool for studies of diagnostic reliability (QAREL). *BMC Medical Research Methodology* 2013; **13**: 111.

30. Hayden J, van der Windt D, Cartwright J, Cote P, Bombardier C. Assessing Bias in Studies of Prognostic Factors. *Ann Intern Med* 2013; **158**: 280-6.

31. Shea B, Hamela C, Wells G, et al. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. *J Clin Epidemiol* 2009; **62**(10): 1013-20.

32. Whiting P, Rutjes A, Westwood M, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Annals of Internal Medicine* 2011; **155**(8): 529-36.

33. Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. *BMJ* 2013; **346**: f1049.

34. Landis J, Koch G. The measurement of observer agreement for categorical data. *Biometrics* 1977; **33**: 159-74.

35. Cicchetti D. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. *Psychological Assessment* 1994; **6**(4): 284-90.

36. Ekpo EU, Mello-Thoms C, Rickard M, Brennan PC, McEntee MF. Breast density (BD) assessment with digital breast tomosynthesis (DBT): Agreement between QuantraTM and 5th edition BI-RADS. *Breast* 2016; **30**: 185-90.

37. Abdolell M, Tsuruda K, Schaller G, Caines J. Statistical evaluation of a fully automated mammographic breast density algorithm. *Computational & Mathematical Methods in Medicine* 2013; **2013**: 651091.

38. Singh T, Sharma M, Singla V, Khandelwal N. Breast Density Estimation with Fully Automated Volumetric Method: Comparison to Radiologists' Assessment by BI-RADS Categories. *Academic Radiology* 2016; **23**(1): 78-83.

39. Mazor RD, Savir A, Gheorghiu D, Weinstein Y, Abadi-Korek I, Shabshin N. The inter-observer variability of breast density scoring between mammography technologists and breast radiologists and its effect on the rate of adjuvant ultrasound. *European Journal of Radiology* 2016; **85**(5): 957-62.

40. Holland K, van Zelst J, den Heeten GJ, et al. Consistency of breast density categories in serial screening mammograms: A comparison between automated and human assessment. *Breast* 2016; **29**: 49-54.

41. Osteras BH, Martinsen AC, Brandal SH, et al. Classification of fatty and dense breast parenchyma: comparison of automatic volumetric density measurement and radiologists' classification and their inter-observer variation. *Acta Radiologica* 2016; **57**(10): 1178-85.

42. Gweon HM, Youk JH, Kim JA, Son EJ. Radiologist assessment of breast density by BI-RADS categories versus fully automated volumetric assessment. *AJR American Journal of Roentgenology* 2013; **201**(3): 692-7.

43. Kang E, Lee EJ, Jang M, et al. Reliability of Computer-Assisted Breast Density Estimation: Comparison of Interactive Thresholding, Semiautomated, and Fully Automated Methods. *AJR American Journal of Roentgenology* 2016; **207**(1): 126-34.

44. Seo JM, Ko ES, Han BK, Ko EY, Shin JH, Hahn SY. Automated volumetric breast density estimation: a comparison with visual assessment. *Clinical Radiology* 2013; **68**(7): 690-5.

45. Eom H, Cha J, Kang J, Choi W, Kim H, Go E. Comparison of variability in breast density assessment by BI-RADS category according to the level of experience. *Acta Radiologica* 2017.

46. Garrido-Estepa M, Ruiz-Perales F, Miranda J, et al. Evaluation of mammographic density patterns: reproducibility and concordance among scales. *BMC Cancer* 2010; **10**: 485.

47. Sartor H, Lang K, Rosso A, Borgquist S, Zackrisson S, Timberg P. Measuring mammographic density: comparing a fully automated volumetric assessment versus European radiologists' qualitative classification. *European Radiology* 2016; **26**(12): 4354-60.

48. Alshafeiy TI, Wadih A, Nicholson BT, et al. Comparison Between Digital and Synthetic 2D Mammograms in Breast Density Interpretation. *AJR American Journal of Roentgenology* 2017; **209**(1): W36-W41.

49. Harvey JA, Gard CC, Miglioretti DL, et al. Reported mammographic density: film-screen versus digital acquisition. *Radiology* 2013; **266**(3): 752-8.

50. Raza S, Mackesy MM, Winkler NS, Hurwitz S, Birdwell RL. Effect of Training on Qualitative Mammographic Density Assessment. *Journal of the American College of Radiology* 2016; **13**(3): 310-5.

51. Irshad A, Leddy R, Lewis M, et al. Changes in Breast Density Reporting Patterns of Radiologists After Publication of the 5th Edition BI-RADS Guidelines: A Single Institution Experience. *American Journal of Roentgenology* 2017; **209**: 943-8.

52. Kerlikowske K, Ma L, Scott C, et al. Combining quantitative and qualitative breast density measures to assess breast cancer risk. *Breast Cancer Research* 2017; **19**(1): 97.

53. Busana MC, Eng A, Denholm R, et al. Impact of type of full-field digital image on mammographic density assessment and breast cancer risk estimation: a case-control study. *Breast Cancer Research* 2016; **18**(1): 96.

54. Martinez Gomez I, Casals El Busto M, Anton Guirao J, Ruiz Perales F, Llobet Azpitarte R. Semiautomatic estimation of breast density with DM-Scan software. *Radiologia* 2014; **56**(5): 429-34.

55. Pollan M, Llobet R, Miranda-Garcia J, et al. Validation of DM-Scan, a computer-assisted tool to assess mammographic density in full-field digital mammograms. *Springerplus* 2013; 2(1): 242.
56. Osteras BH, Martinsen AC, Brandal SH, et al. BI-RADS Density Classification From Areometric

and Volumetric Automatic Breast Density Measurements. *Academic Radiology* 2016; 23(4): 468-78.
57. Bédard M, Martin N, Krueger P, Brazil K. Assessing Reproducibility of Data Obtained With

Instruments Based on Continuous Measurements. *Experimental aging research* 2000; **26**: 353-65. 58. Rawashdeh MA, Bourne RM, Ryan EA, et al. Quantitative measures confirm the inverse

relationship between lesion spiculation and detection of breast masses. *Academic Radiology* 2013; **20**(5): 576-80.

59. Nelson HD, O'Meara ES, Kerlikowske K, Balch S, Miglioretti D. Factors Associated With Rates of False-Positive and False-Negative Results From Digital Mammography Screening: An Analysis of Registry Data. *Annals of Internal Medicine* 2016; **164**(4): 226-35.

60. Timmermans L, Bleyen L, Bacher K, et al. Screen-detected versus interval cancers: Effect of imaging modality and breast density in the Flemish Breast Cancer Screening Programme. *European Radiology* 2017; **13**: 13.

61. Holland K, van Gils CH, Mann RM, Karssemeijer N. Quantification of masking risk in screening mammography with volumetric breast density maps. *Breast Cancer Research & Treatment* 2017; **162**(3): 541-8.

62. Kerlikowske K, Zhu W, Tosteson AN, et al. Identifying women with dense breasts at high risk for interval cancer: a cohort study.[Summary for patients in Ann Intern Med. 2015 May 19;162(10). doi: 10.7326/P15-9018; PMID: 25984867]. *Annals of Internal Medicine* 2015; **162**(10): 673-81.

63. Smith V, Devane D, Begley C, Clarke M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. *BMC Medical Research Methodology* 2011; **11**(15).
64. Cummings SR, Tice JA, Bauer S, et al. Prevention of breast cancer in postmenopausal

women: approaches to estimating and reducing risk. *Journal of the National Cancer Institute* 2009; **101**(6): 384-98.

65. Bae JM, Kim EH. Breast Density and Risk of Breast Cancer in Asian Women: A Meta-analysis of Observational Studies. *Journal of Preventive Medicine & Public Health / Yebang Uihakhoe Chi* 2016; **49**(6): 367-75.

66. Huo CW, Chew GL, Britt KL, et al. Mammographic density-a review on the current understanding of its association with breast cancer. *Breast Cancer Research & Treatment* 2014; **144**(3): 479-502.

67. Elias SG, Adams A, Wisner DJ, et al. Imaging features of HER2 overexpression in breast cancer: a systematic review and meta-analysis. *Cancer Epidemiology, Biomarkers & Prevention* 2014; **23**(8): 1464-83.

68. Antoni S, Sasco AJ, dos Santos Silva I, McCormack V. Is mammographic density differentially associated with breast cancer according to receptor status? A meta-analysis. *Breast Cancer Research & Treatment* 2013; **137**(2): 337-47.

69. McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. *Cancer Epidemiology, Biomarkers & Prevention* 2006; **15**(6): 1159-69.

70. Chang JM, Koo HR, Moon WK. Radiologist-performed hand-held ultrasound screening at average risk of breast cancer: results from a single health screening center. *Acta Radiologica* 2015; **56**(6): 652-8.

71. Destounis S, Arieno A, Morgan R. Initial experience with the New York State breast density inform law at a community-based breast center. *Journal of Ultrasound in Medicine* 2015; **34**(6): 993-1000.

72. Hwang JY, Han BK, Ko EY, Shin JH, Hahn SY, Nam MY. Screening Ultrasound in Women with Negative Mammography: Outcome Analysis. *Yonsei Medical Journal* 2015; **56**(5): 1352-8.

73. Kim SY, Kim MJ, Moon HJ, Yoon JH, Kim EK. Application of the downgrade criteria to supplemental screening ultrasound for women with negative mammography but dense breasts. *Medicine* 2016; **95**(44): e5279.

74. Klevos GA, Collado-Mesa F, Net JM, Yepes MM. Utility of supplemental screening with breast ultrasound in asymptomatic women with dense breast tissue who are not at high risk for breast cancer. *Indian Journal of Radiology & Imaging* 2017; **27**(1): 52-8.

75. Moon HJ, Jung I, Park SJ, Kim MJ, Youk JH, Kim EK. Comparison of Cancer Yields and Diagnostic Performance of Screening Mammography vs. Supplemental Screening Ultrasound in 4394 Women with Average Risk for Breast Cancer. *Ultraschall in der Medizin* 2015; **36**(3): 255-63.

76. Tagliafico AS, Calabrese M, Mariscotti G, et al. Adjunct Screening With Tomosynthesis or Ultrasound in Women With Mammography-Negative Dense Breasts: Interim Report of a Prospective Comparative Trial. *Journal of Clinical Oncology* 2016; **09**: 09.

77. Weigert J, Steenbergen S. The connecticut experiments second year: ultrasound in the screening of women with dense breasts. *Breast Journal* 2015; **21**(2): 175-80.

78. Wilczek B, Wilczek HE, Rasouliyan L, Leifland K. Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: Report from a hospital-based, high-volume, single-center breast cancer screening program. *European Journal of Radiology* 2016; **85**(9): 1554-63.

79. Brem R, Tabár L, Duffy S, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study. *Radiology* 2015; **274**(3): 663-73.

80. Giuliano V, Giuliano C. Improved breast cancer detection in asymptomatic women using 3Dautomated breast ultrasound in mammographically dense breasts. *Clinical Imaging* 2013; **37**(3): 480-6.

81. Weigert J, Steenbergen S. The connecticut experiment: the role of ultrasound in the screening of women with dense breasts. *Breast Journal* 2012; **18**(6): 517-22.

82. Weigert JM. The Connecticut Experiment; The Third Installment: 4 Years of Screening Women with Dense Breasts with Bilateral Ultrasound. *Breast Journal* 2017; **23**(1): 34-9.

83. Destounis S, Arieno A, Morgan R. New York State Breast Density Mandate: Follow-up Data With Screening Sonography. *Journal of Ultrasound in Medicine* 2017; **28**: 28.

84. Gray E, Donten A, Karssemeijer N, et al. Evaluation of a Stratified National Breast Screening Program in the United Kingdom: An Early Model-Based Cost-Effectiveness Analysis. *Value in Health* 2017.

85. Sprague BL, Stout NK, Schechter C, et al. Benefits, harms, and cost-effectiveness of supplemental ultrasonography screening for women with dense breasts. *Annals of Internal Medicine* 2015; **162**(3): 157-66.

86. American College of Radiology. ACR Statement on Reporting Breast Density in Mammography Reports and Patient Summaries. 2017. <u>https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Reporting-Breast-Density</u>.

87. Duffy SW, Morrish OWE, Allgood PC, et al. Mammographic density and breast cancer risk in breast screening assessment cases and women with a family history of breast cancer. *Eur J Cancer* 2018; **88**: 48-56.

88. Lee CI, Chen LE, Elmore JG. Risk-based Breast Cancer Screening: Implications of Breast Density. *Medical Clinics of North America* 2017; **101**(4): 725-41.

89. Geisel J, Raghu M, Hooley R. The Role of Ultrasound in Breast Cancer Screening: The Case for and Against Ultrasound. *Seminars in Ultrasound, CT & MR* 2018; **39**(1): 25-34.

Appendix 1 Search strategy

Breast ultrasound searches for Q1, Q2 and Q3 in Medline and Embase were run up to July 10 2017.

Question 1: What are the reliability and validity of available methods to measure

mammographic breast density?

Medline/Embase from 2000

- 1. (breast* adj2 dens*).tw.
- 2. (mammogra* adj2 dens*).tw.
- 3. Breast Density/
- 4. volumetric breast composition.mp.
- 5. 1 or 2 or 3 or 4

6. (Volpara* or cumulus or imageJ* or quantra or Single energy x-ray absorptiometry or DM-Density

- or M-Vu Breast).tw.
- 7. Ultrasonography, Mammary/
- 8. (ultrasound or ultrasonograph* or ultrasonic* or sonograph*).tw.
- 9. exp Mammography/
- 10. (BIRADS or BI-RADS).tw.
- 11. mammograph*.tw.
- 12. 6 or 7 or 8 or 9 or 10 or 11
- 13. 5 and 12
- 14. exp "Reproducibility of Results"/
- 15. exp observer variation/

16. (reliability or reliable or valid* or evaluat* or measure* or variability or variation or intra-rater or consisten* or performance or concordan* or discordan* or agreement or correlat* or reproducib*).tw.
17. 14 or 15 or 16

- 17.14 01 15 01 1
- 18. 13 and 17
- 19. limit 18 to english language

Cochrane Central Register of Controlled Trials : Issue 9, September 2017

Search strategy: 'mammogra* AND screen* AND (breast density OR dense breast* OR parenchym*)

in Title, Abstract, Keywords, Publication Year from 2015 to 2017 in Trials.

Question 2. Is mammographic breast density a risk factor for cancers being missed during screening (false negatives/interval cancers)?

Medline/Embase from 2000

- 1. (breast* adj2 dens*).tw.
- 2. (mammogra* adj2 dens*).tw.

3. Breast Density/

4. volumetric breast composition.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word]

5. 1 or 2 or 3 or 4

6. exp Breast Neoplasms/cl, di, dg [Classification, Diagnosis, Diagnostic Imaging]

7. (breast adj2 (cancer or carcinoma or DCIS or malignan*)).tw.

- 8. "Early Detection of Cancer"/
- 9. 6 or 7 or 8
- 10. 5 and 9
- 11. risk.mp. or Risk/
- 12. (associated or association or relationship or odds ratio).tw.
- 13. 11 or 12
- 14. 10 and 13
- 15. limit 14 to english language
- 16. conference.pt.
- 17. 15 not 16

Question 3. What is the test accuracy of ultrasound in comparison to mammography in women with dense breasts?

Medline

- 1. (breast* adj2 dens*).tw.
- 2. (mammogra* adj2 dens*).tw.
- 3. Breast Density/
- 4. volumetric breast composition.mp.
- 5. 1 or 2 or 3 or 4

6. (Volpara* or cumulus or imageJ* or quantra or Single energy x-ray absorptiometry or DM-Density or M-Vu Breast).tw.

- 7. Ultrasonography, Mammary/
- 8. (ultrasound or ultrasonograph* or ultrasonic* or sonograph*).tw.
- 9. exp Mammography/
- 10. (BIRADS or BI-RADS).tw.
- 11. mammograph*.tw.
- 12. 6 or 7 or 8 or 9 or 10 or 11
- 13. 5 and 12

14. (detect* or specific* or sensitive* or accura* or predict* or false-positive or false-negative or true-negative or true-positive or AUC or ROC or odds ratio or performance).tw.

15. exp "Sensitivity and Specificity"/

- 16. 14 or 15
- 17. 13 and 16
- 18. limit 17 to english language
- 19. 6 or 7 or 8
- 20. 9 or 10 or 11
- 21. 5 and 19 and 20
- 22. limit 21 to english language
- 23. 18 or 22

Embase

- 1. (breast* adj2 dens*).tw.
- 2. (mammogra* adj2 dens*).tw.
- 3. Breast Density/
- 4. volumetric breast composition.mp.
- 5. 1 or 2 or 3 or 4

6. (Volpara* or cumulus or imageJ* or quantra or Single energy x-ray absorptiometry or DM-Density or M-Vu Breast).tw.

- 7. Ultrasonography, Mammary/
- 8. (ultrasound or ultrasonograph* or ultrasonic* or sonograph*).tw.
- 9. exp Mammography/
- 10. (BIRADS or BI-RADS).tw.
- 11. mammograph*.tw.
- 12. 6 or 7 or 8 or 9 or 10 or 11
- 13. 5 and 12

14. (detect* or specific* or sensitive* or accura* or predict* or false-positive or false-negative or true-negative or true-postive or AUC or ROC or odds ratio or performance).tw.

- 15. exp "Sensitivity and Specificity"/
- 16. 14 or 15
- 17. 13 and 16
- 18. limit 17 to english language
- 19.6 or 7 or 8
- 20. 9 or 10 or 11
- 21. 5 and 19 and 20
- 22. limit 21 to english language
- 23. 18 or 22
- 24. conference.pt.

25. 23 not 24

Question 4. For women attending breast screening in the UK, what are the costconsequences of adding mammographic density measurements, and then ultrasound for those found to have high mammographic breast density?

Medline

Searched Ovid MEDLINE(R) 1946 to January Week 2 2018, Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations January 22, 2018, Ovid MEDLINE(R) Epub Ahead of Print January 22, 2018

- 1. (breast* adj2 dens*).tw.
- 2. (mammogra* adj2 dens*).tw.
- 3. Breast Density/
- 4. volumetric breast composition.mp.
- 5. 1 or 2 or 3 or 4

6. (Volpara* or cumulus or imageJ* or quantra or Single energy x-ray absorptiometry or DM-Density or M-Vu Breast).tw.

- 7. Ultrasonography, Mammary/
- 8. (ultrasound or ultrasonograph* or ultrasonic* or sonograph*).tw.
- 9. exp Mammography/
- 10. (BIRADS or BI-RADS).tw.
- 11. mammograph*.tw.
- 12. 6 or 7 or 8 or 9 or 10 or 11
- 13. 5 and 12
- 14. exp Economics/
- 15. exp "Costs and Cost Analysis"/

16. exp Quality-Adjusted Life Years/ 123

17. (pharmacoeconomic* or pharmaco-economic* or economic* or cost*).tw.

18. (qaly* or ICER* or utilit* or EQ5D* or EQ-5D* or euroqol* or euro-qol* or short form or SF-36 or SF36 or SF-6D or SF-12 or SF12 or HUI).tw.

19. (decision adj2 model).tw.

20. ((resource* adj2 utili\$ation) or 'resource use').tw.

21. (utilit* adj2 (value* or index* or health or measure* or estimate*)).tw.

22. 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21

23. 13 and 22

- 24. limit 23 to english language
- 25. limit 24 to yr="2005 -Current"

135 downloaded

Embase

Ovid Embase 1980 to 2018 Week 04

- 1. (breast* adj2 dens*).tw.
- 2. (mammogra* adj2 dens*).tw.
- 3. Breast Density/
- 4. volumetric breast composition.mp.
- 5. 1 or 2 or 3 or 4

6. (Volpara* or cumulus or imageJ* or quantra or Single energy x-ray absorptiometry or DM-Density or M-Vu Breast).tw.

- 7. Ultrasonography, Mammary/
- 8. (ultrasound or ultrasonograph* or ultrasonic* or sonograph*).tw.
- 9. exp Mammography/

10. (BIRADS or BI-RADS).tw.

- 11. mammograph*.tw.
- 12. 6 or 7 or 8 or 9 or 10 or 11
- 13. 5 and 12
- 14. exp Economics/
- 15. exp "Costs and Cost Analysis"/
- 16. exp Quality-Adjusted Life Years/

17. (pharmacoeconomic* or pharmaco-economic* or economic* or cost*).tw.

18. (qaly* or ICER* or utilit* or EQ5D* or EQ-5D* or euroqol* or euro-qol* or short form or SF-36 or SF36 or SF-6D or SF-12 or SF12 or HUI).tw.

19. (decision adj2 model).tw.

- 20. ((resource* adj2 utili\$ation) or 'resource use').tw.
- 21. (utilit* adj2 (value* or index* or health or measure* or estimate*)).tw.
- 22. 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21
- 23. 13 and 22
- 24. limit 23 to english language
- 25. limit 24 to yr="2005 -Current"
- 26. conference abstract.pt.
- 27. 25 not 26
- 165 downloaded

Web of Science Core Collection 125

Searched: TOPIC: (breast* NEAR/3 dens*) AND TOPIC: (ultrasound or ultrasonograph* or ultrasonic* or sonograph* or supplemental) AND TOPIC: (cost* or economic* or QALY*) AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article)

Timespan: 2005-2018. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI.

51 downloaded

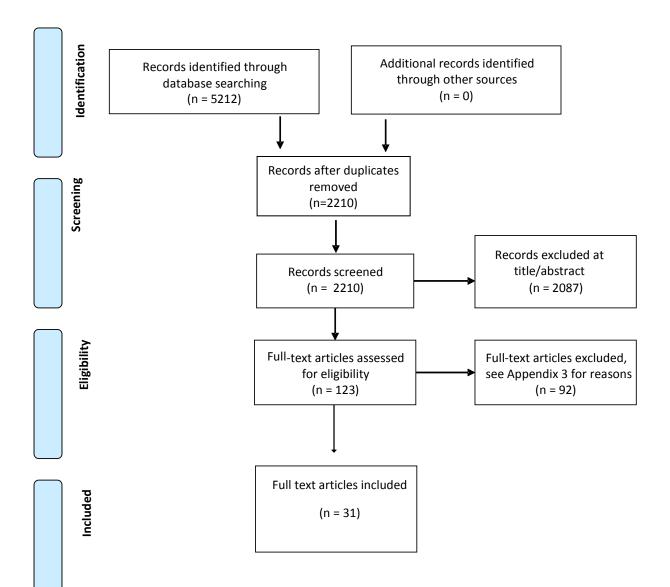
Cochrane Library (23/01/2018) NHS Economic Evaluation Database and Health Technology Assessment Database :

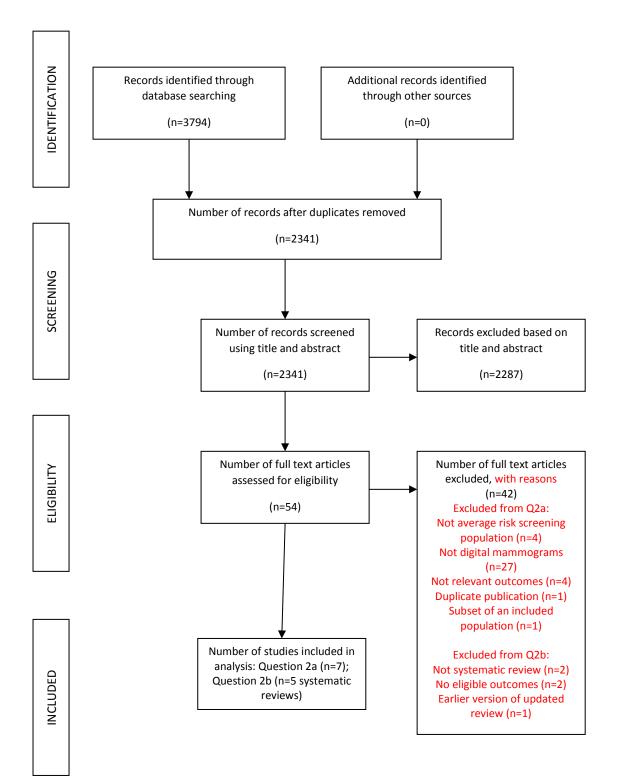
Searched: 'breast* near/3 dens* in Title, Abstract, Keywords and cost* or economic* or QALY* in Title, Abstract, Keywords

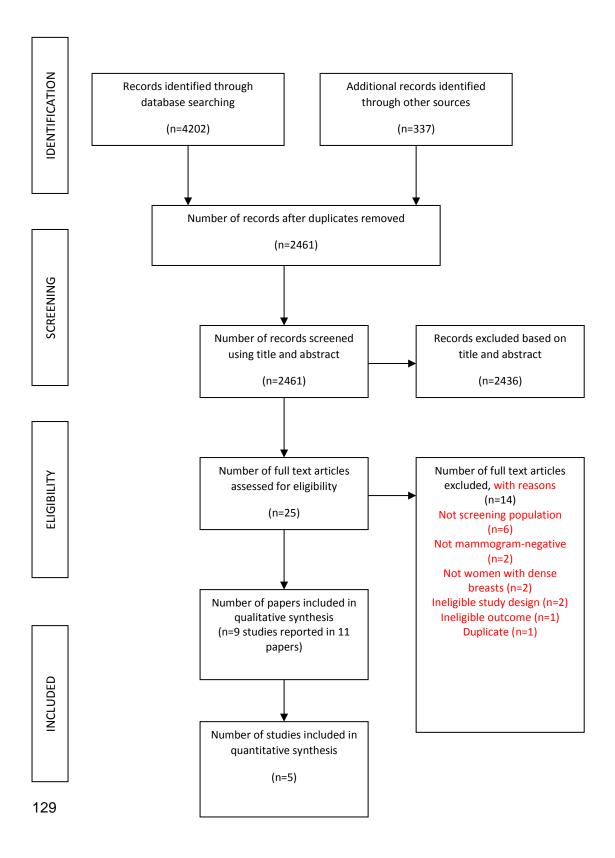
8 records downloaded

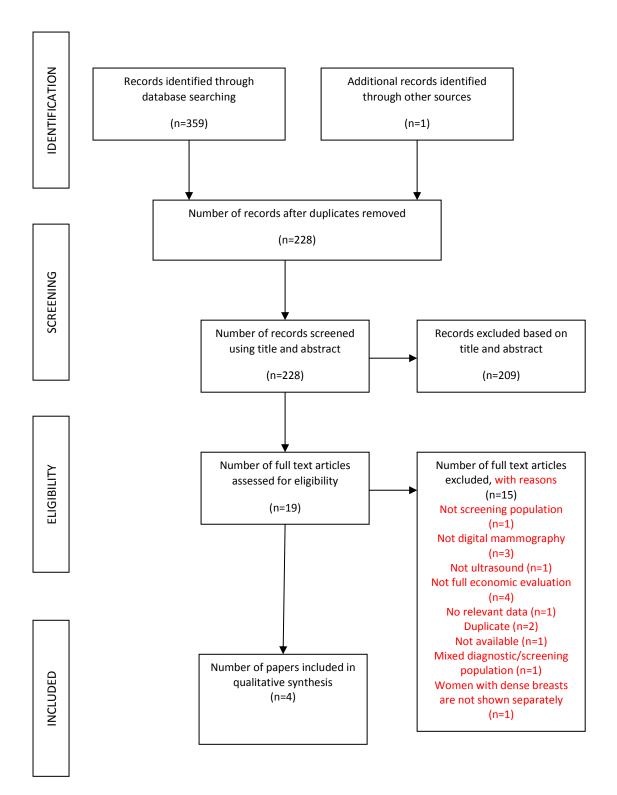
Cost-effectiveness Analysis (CEA) Registry

4 records found


Endnote: total of **359** records before deduplication; After deduplication = **201**


Searches were supplemented with weekly database auto-alerts and update searches; papers identified by experts; and examining reference lists of identified papers.


Appendix 2 PRISMA record selection


Question 1

PRISMA flow chart for question 1

Appendix 3 Excluded studies

Paper	Reason for exclusion
Abdolell, M., et al. (2016). "Consistency of visual assessments of	Diagnostic mammograms
mammographic breast density from vendor-specific "for presentation"	
images." Journal of Medical Imaging 3(1): 011004.	
Alipour, S., et al. (2013). "Imperfect correlation of mammographic and	Ineligible comparator
clinical breast tissue density." Asian Pacific Journal of Cancer Prevention:	
Apjcp 14(6): 3685-3688.	
Benichou, J., et al. (2003). "Secular stability and reliability of	Film mammography
measurements of the percentage of dense tissue on mammograms."	· · · · · · · · · · · · · · · · · · ·
Cancer Detection & Prevention 27(4): 266-274.	
Berg, W. A., et al. (2000). "Breast Imaging Reporting and Data System:	Film mammography
inter- and intraobserver variability in feature analysis and final	· ····· ······························
assessment." AJR. American Journal of Roentgenology 174(6): 1769-	
1777.	
Bernardi, D., et al. (2012). "Interobserver agreement in breast	Film mammography
radiological density attribution according to BI-RADS quantitative	
classification." Radiologia Medica 117(4): 519-528.	
Brandt, K. R., et al. (2016). "Comparison of Clinical and Automated	Multiple cohorts
Breast Density Measurements: Implications for Risk Prediction and	
Supplemental Screening." Radiology 279(3): 710-719.	
Brentnall, A. R., et al. (2015). "Mammographic density adds accuracy to	Mixed film/digital
both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective	mammography
UK screening cohort." Breast Cancer Research 17(1): 147.	
Burton, A., et al. (2016). "Mammographic density assessed on paired	Multiple cohorts
raw and processed digital images and on paired screen-film and digital	
images across three mammography systems." Breast Cancer Research	
18(1): 130.	
Busana, M. C., et al. (2016). "Assessing within-woman changes in	Film mammography
mammographic density: a comparison of fully versus semi-automated	
area-based approaches." Cancer Causes & Control 27(4): 481-491.	
Castillo-Garcia, M., et al. (2017). "Automated Breast Density	Mixed opportunistic
Computation in Digital Mammography and Digital Breast	screening/diagnostic population
Tomosynthesis: Influence on Mean Glandular Dose and BIRADS Density	
Categorization." Academic Radiology 24(7): 802-810.	
Categorization." Academic Radiology 24(7): 802-810. Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast	<100 women
	<100 women
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast	<100 women
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1:	<100 women
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 2795-2798.	<100 women
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International	
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 2795-2798. Chang, R. F., et al. (2006). "Three comparative approaches for breast	
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 2795-2798. Chang, R. F., et al. (2006). "Three comparative approaches for breast density estimation in digital and screen film mammograms." Conference Proceedings: Annual International Conference of the IEEE Engineering	
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 2795-2798. Chang, R. F., et al. (2006). "Three comparative approaches for breast density estimation in digital and screen film mammograms." Conference Proceedings: Annual International Conference of the IEEE Engineering	
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 2795-2798. Chang, R. F., et al. (2006). "Three comparative approaches for breast density estimation in digital and screen film mammograms." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 4853-4856. Chang, Y. H., et al. (2002). "Computerized assessment of tissue	<100 women
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 2795-2798. Chang, R. F., et al. (2006). "Three comparative approaches for breast density estimation in digital and screen film mammograms." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 4853-4856.	<100 women
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 2795-2798. Chang, R. F., et al. (2006). "Three comparative approaches for breast density estimation in digital and screen film mammograms." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 4853-4856. Chang, Y. H., et al. (2002). "Computerized assessment of tissue composition on digitized mammograms." Academic Radiology 9(8): 899- 905.	<100 women Film mammography
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 2795-2798. Chang, R. F., et al. (2006). "Three comparative approaches for breast density estimation in digital and screen film mammograms." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 4853-4856. Chang, Y. H., et al. (2002). "Computerized assessment of tissue composition on digitized mammograms." Academic Radiology 9(8): 899- 905. Cheddad, A., et al. (2014). "Area and volumetric density estimation in	<100 women
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 2795-2798. Chang, R. F., et al. (2006). "Three comparative approaches for breast density estimation in digital and screen film mammograms." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 4853-4856. Chang, Y. H., et al. (2002). "Computerized assessment of tissue composition on digitized mammograms." Academic Radiology 9(8): 899- 905. Cheddad, A., et al. (2014). "Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast	<100 women Film mammography
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 2795-2798. Chang, R. F., et al. (2006). "Three comparative approaches for breast density estimation in digital and screen film mammograms." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 4853-4856. Chang, Y. H., et al. (2002). "Computerized assessment of tissue composition on digitized mammograms." Academic Radiology 9(8): 899- 905. Cheddad, A., et al. (2014). "Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer." PLoS ONE [Electronic Resource] 9(10): e110690.	<100 women Film mammography Ineligible comparator
Chang, R. F., et al. (2006). "Breast density analysis in 3-D whole breast ultrasound images." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 2795-2798. Chang, R. F., et al. (2006). "Three comparative approaches for breast density estimation in digital and screen film mammograms." Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society 1: 4853-4856. Chang, Y. H., et al. (2002). "Computerized assessment of tissue composition on digitized mammograms." Academic Radiology 9(8): 899- 905. Cheddad, A., et al. (2014). "Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast	<100 women Film mammography

Ciatto, S., et al. (2005). "Categorizing breast mammographic density:	Film mammography
intra- and interobserver reproducibility of BI-RADS density categories."	
Breast 14(4): 269-275.	
Couwenberg, A. M., et al (2014). "Assessment of a fully automated,	Correlates ImageJ with Cumulus
high-throughput mammographic density measurement tool for use with processed digital mammograms." Cancer Causes & Control 25(8): 1037-	(which was used to train the ImageJ) in the training set;
43.	
45.	validation set not screening
Damases, C. N., et al. (2015). "Mammographic density measurements	population <100 women
are not affected by mammography system." Journal of Medical Imaging	
2(1): 015501.	
Damases, C. N., et al (2017). "Intercountry analysis of breast density	<100 women
classification using visual grading." Br J Radiol 90(1076): 20170064	
Ekpo, E. U., et al. (2016). "Assessment of Interradiologist Agreement	Mixed screening/diagnostic
Regarding Mammographic Breast Density Classification Using the Fifth	population
Edition of the BI-RADS Atlas." AJR. American Journal of Roentgenology	population
206(5): 1119-1123.	
Ekpo, E. U., et al. (2017). "A self-directed learning intervention for	<100 women
radiographers rating mammographic breast density." Radiography. 10.	
Engelken 2014. Volumetric breast composition analysis: reproducibility	No eligible data
of breast percent density and fibroglandular tissue volume	5
measurements in serial mammograms. Acta Radiologica 55(1): 32-8	
Gao, J., et al. (2008). "Reproducibility of visual assessment on	Participants at high risk of
mammographic density." Breast Cancer Research & Treatment 108(1):	cancer
121-127.	
Gard, C. C., et al. (2015). "Misclassification of Breast Imaging Reporting	Film mammography
and Data System (BI-RADS) Mammographic Density and Implications for	
Breast Density Reporting Legislation." Breast Journal 21(5): 481-489.	
Glide-Hurst, C. K., et al. (2007). "A new method for quantitative analysis	Film mammography
of mammographic density." Medical Physics 34(11): 4491-4498.	
Gram, I. T., et al. (2005). "Percentage density, Wolfe's and Tabar's	Film mammography
mammographic patterns: agreement and association with risk factors	
for breast cancer." Breast Cancer Research 7(5): R854-861.	
Heine, J. J., et al. (2011). "Calibrated measures for breast density	Ineligible comparator
estimation." Academic Radiology 18(5): 547-555.	
Heine, J. J., et al. (2011). "A quantitative description of the percentage of	Ineligible comparator
breast density measurement using full-field digital mammography."	
Academic Radiology 18(5): 556-564.	Evoluted study designs summary
Hersh, M. A. (2004). "Imaging the dense breast." Applied Radiology	Excluded study design: summary
33(1): 22-26. Highnam, R., et al. (2007). "Comparing measurements of breast	of density Ineligible interventions
density." Physics in Medicine & Biology 52(19): 5881-5895.	ineligible interventions
Highnam, R., et al. (2006). "Breast composition measurements using	Ineligible interventions
retrospective standard mammogram form (SMF)." Physics in Medicine &	
Biology 51(11): 2695-2713.	
Hodge, R., et al. (2014). "Comparison of Danish dichotomous and BI-	Film mammography
RADS classifications of mammographic density." Acta Radiologica Short	
Reports 3(5): 2047981614536558.	
latrakis, G., et al. (2010). "Preliminary results of objective assessment of	<100 women
mammographic percent density." Clinical & Experimental Obstetrics &	
Gynecology 37(1): 24-25.	
latrakis, G., et al. (2011). "Quantitative assessment of breast	<100 women
mammographic density with a new objective method." Journal of	
Medicine & Life 4(3): 310-313.	
Jamal, N., et al. (2006). "Quantitative assessment of breast density from	Diagnostic mammography
digitized mammograms into Tabar's patterns." Physics in Medicine &	- · ·
Biology 51(22): 5843-5857.	

Jari, I., et al. (2014). "Computerized calculation of breast density: our	Film mammography
experience from Arcadia Medical Imaging Center." Revista Medico-	
Chirurgicala a Societatii de Medici Si Naturalisti Din Iasi 118(4): 979-985.	
Jeffreys, M., et al. (2006). "Initial experiences of using an automated	Ineligible interventions
volumetric measure of breast density: the standard mammogram form."	
British Journal of Radiology 79(941): 378-382.	
Kallenberg, M. G., et al. (2011). "Automatic breast density	Film mammography
segmentation: an integration of different approaches." Physics in	
Medicine & Biology 56(9): 2715-2729.	
Kataoka, M., et al. (2008). "Mammographic density using two computer- based methods in an isoflavone trial." Maturitas 59(4): 350-357.	Film mammography
Keller, B. M., et al. (2015). "Preliminary evaluation of the publicly	Mixed population (screening and
available Laboratory for Breast Radiodensity Assessment (LIBRA)	diagnostic)
software tool: comparison of fully automated area and volumetric	
density measures in a case-control study with digital mammography."	
Breast Cancer Research 17: 117.	
Kim, W. H., et al. (2013). "Variability of breast density assessment in	Not screening population
short-term reimaging with digital mammography." European Journal of	
Radiology 82(10): 1724-1730.	
Ko, S. Y., et al. (2014). "Mammographic density estimation with	Mixed population (screening and
automated volumetric breast density measurement." Korean Journal of	diagnostic)
Radiology 15(3): 313-321.	
Kotsuma, Y., et al. (2008). "Quantitative assessment of mammographic	Film mammography
density and breast cancer risk for Japanese women." Breast 17(1): 27-	i init indinitiography
35.	
Lee, H. N., et al. (2015). "Comparison of mammographic density	Mixed population (screening and
estimation by Volpara software with radiologists' visual assessment:	diagnostic)
analysis of clinical-radiologic factors affecting discrepancy between	
them." Acta Radiologica 56(9): 1061-1068.	
Li, J., et al. (2012). "High-throughput mammographic-density	Film mammography
measurement: a tool for risk prediction of breast cancer." Breast Cancer	
Research 14(4): R114.	
Lokate, M., et al. (2010). "Volumetric breast density from full-field	Ineligible comparator
digital mammograms and its association with breast cancer risk factors:	5
A comparison with a threshold method." Cancer Epidemiology	
Biomarkers and Prevention 19(12): 3096-3105.	
Lu, L. J., et al. (2007). "Computing mammographic density from a	Ineligible comparator
multiple regression model constructed with image-acquisition	
parameters from a full-field digital mammographic unit." Physics in	
Medicine & Biology 52(16): 4905-4921.	
Machida, Y., et al. (2016). "Automated volumetric breast density	Ineligible comparator
estimation out of digital breast tomosynthesis data: feasibility study of a	
new software version." Springerplus 5(1): 780.	
Marias, K., et al. (2005). "Automatic labelling and BI-RADS	Excluded study design:
characterisation of mammogram densities." Conference Proceedings:	description of method of
Annual International Conference of the IEEE Engineering in Medicine &	automated characterisation of
Biology Society 6: 6394-6398.	density
Maskarinec, G., et al. (2011). "Comparison of breast density measured	Film mammography
by dual energy X-ray absorptiometry with mammographic density	
among adult women in Hawaii." Cancer Epidemiology 35(2): 188-193.	
Masroor, I., et al. (2016). "To asses inter- and intra-observer variability	Mixed population (screening and
for breast density and BIRADS assessment categories in mammographic	diagnostic)
reporting." JPMA - Journal of the Pakistan Medical Association 66(2):	· · · · · ·
194-197.	
McCormack, V. A., et al. (2007). "Comparison of a new and existing	Film mammography
method of mammographic density measurement: intramethod	
nethod of manimographic density measurement, initiamethou	

High risk population
Film mammography
High risk population
Excluded study design: comment
Film mammography
Not reliability/concordance
Film mammography
Ineligible comparator
<100 women
Not a screening population (no
screening programme in place,
mixed self-referral/diagnostic)
Film mammography
No appropriate interventions
Film mammography
Film mammography
Mixed self-referred to
screening/diagnostic population
Duplicate
-
Mixed population (screening and
diagnostic)
Not reliability/concordance

Schmachtenberg, C., et al. (2015). "Intraindividual comparison of two	Not screening population
methods of volumetric breast composition assessment." Academic	
Radiology 22(4): 447-452.	
Shepherd, J. A., et al. (2005). "Novel use of single X-ray absorptiometry	Film mammography
for measuring breast density." Technology in Cancer Research &	
Treatment 4(2): 173-182.	
Shepherd, J. A., et al. (2011). "Volume of mammographic density and	Not reliability/concordance
risk of breast cancer." Cancer Epidemiology, Biomarkers & Prevention	
20(7): 1473-1482.	
Singh, J. M., et al. (2013). "Volumetric breast density assessment:	Not screening population
reproducibility in serial examinations and comparison with visual	(surveillance after breast surgery
assessment." Rofo: Fortschritte auf dem Gebiete der Rontgenstrahlen	or diagnostic)
und der Nuklearmedizin 185(9): 844-848.	
Soares, D., et al. (2002). "Age as a predictive factor of mammographic	Mixed population (screening and
breast density in Jamaican women." Clinical Radiology 57(6): 472-476.	diagnostic)
Sohn, G., et al. (2014). "Reliability of the percent density in digital	Not screening population
mammography with a semi-automated thresholding method." Journal	
of Breast Cancer 17(2): 174-179.	
Sperrin, M., et al. (2013). "Correcting for rater bias in scores on a	Film mammography
continuous scale, with application to breast density." Statistics in	
Medicine 32(26): 4666-4678.	
Sprague, B. L., et al. (2016). "Variation in Assessments of Breast Density	Summary of a study for patients
on Mammograms in Clinical Practice." Annals of Internal Medicine 165	
(7) (no pagination)(I-28).	
Stone, J., et al. (2010). "Predicting breast cancer risk using	Not reliability/concordance
	Not reliability/concordance
mammographic density measurements from both mammogram sides	
and views." Breast Cancer Research & Treatment 124(2): 551-554.	rite and a second se
Tagliafico, A., et al. (2009). "Mammographic density estimation:	Film mammography
comparison among BI-RADS categories, a semi-automated software and	
a fully automated one." Breast 18(1): 35-40.	
Tagliafico, A. S., et al. (2013). "Estimation of percentage breast tissue	Diagnostic population
density: comparison between digital mammography (2D full field digital	
mammography) and digital breast tomosynthesis according to different	
BI-RADS categories." British Journal of Radiology 86(1031): 20130255.	
Tomas, I., et al. (2013). "Computer-aided evaluation of radiologist's	Film mammography
reproducibility and subjectivity in mammographic density assessment."	
Collegium Antropologicum 37(4): 1121-1126.	
Trocchi, P., et al. (2012). "Mammographic density and inter-observer	Not screening population
variability of pathologic evaluation of core biopsies among women with	
mammographic abnormalities." BMC Cancer 12: 554.	
Vachon, C. M., et al. (2013). "Comparison of percent density from raw	Mixed population (screening and
and processed full-field digital mammography data." Breast Cancer	diagnostic)
Research 15(1): R1.	andfinosticy
Winkel, R. R., et al. (2015). "Inter-observer agreement according to	Film mammagraphy
	Film mammography
three methods of evaluating mammographic density and parenchymal	
pattern in a case control study: impact on relative risk of breast cancer."	
BMC Cancer 15: 274.	
Woolcott, C. G., et al. (2014). "Methods for assessing and representing	Film mammography
mammographic density: an analysis of 4 case-control studies." American	
Journal of Epidemiology 179(2): 236-244.	
Yan, S., et al. (2017). "Applying a new bilateral mammographic density	Ineligible interventions
segmentation method to improve accuracy of breast cancer risk	
prediction." International Journal of Computer Assisted Radiology and	
Surgery: 1-10.	
Youk, J. H., et al. (2016). "Automated Volumetric Breast Density	Not screening population
· · · · · · · · · · · · · · · · · · ·	
Measurements in the Era of the BI-RADS Fifth Edition: A Comparison	

With Visual Assessment." AJR. American Journal of Roentgenology 206(5): 1056-1062.	
Youk 2017. Comparison of Visual Assessment of Breast Density in BI-	Mixed population (screening and
RADS 4th and 5th Editions With Automated Volumetric Measurement.	diagnostic)
American Journal of Roentgenology. 2017;209: 703-708.	

Study	Exclude reason
Bae 2014. Breast cancer detected with screening US: reasons for	Study showed that some cancers
nondetection at mammography. Radiology 270(2): 369-77	missed at mammography due to
	overlying dense tissue, but does
	not show the overall risk of
	missed cancer by density
Baglietto 2014. Associations of mammographic dense and nondense	Film
areas and body mass index with risk of breast cancer. American	
Journal of Epidemiology 179(4): 475-83	e1
Bare 2015. Mammographic and clinical characteristics of different	Film
phenotypes of screen-detected and interval breast cancers in a	
nationwide screening program. Breast Cancer Research & Treatment	
154(2): 403-15	
Benichou 2003. Secular stability and reliability of measurements of the	Film screen or xeroradiogram
percentage of dense tissue on mammograms. Cancer Detection &	
Prevention 27(4): 266-74	Mixed film/ digital
Blanch 2014. Impact of risk factors on different interval cancer	wixed film/ digital
subtypes in a population-based breast cancer screening programme.	
PLoS ONE. 9 (10) (no pagination): e110207	Film
Chiarelli 2006. Influence of patterns of hormone replacement therapy	FIITI
use and mammographic density on breast cancer detection. Cancer Epidemiology, Biomarkers & Prevention 15(10): 1856-62	
Chiarelli 2015. Digital versus screen-film mammography: impact of	No eligible outcomes
mammographic density and hormone therapy on breast cancer	No engible outcomes
detection. Breast Cancer Research & Treatment 2015; 154(2): 377-87.	
Chiu 2010. Effect of baseline breast density on breast cancer incidence,	Film
stage, mortality, and screening parameters: 25-year follow-up of a	
Swedish mammographic screening. Cancer Epidemiology, Biomarkers	
& Prevention. 19(5): 1219-28	
Choi 2016 Analysis of prior mammography with negative result in	Mixed film and digital
women with interval breast cancer. Breast Cancer 23(4): 583-9	
Ciatto 2004. Breast density as a determinant of interval cancer at	Film
mammographic screening. British Journal of Cancer 90(2): 393-6	
Collett 2005. A basal epithelial phenotype is more frequent in interval	Film
breast cancers compared with screen detected tumors. Cancer	
Epidemiology, Biomarkers & Prevention 14(5): 1108-12	
Domingo 2010. Phenotypic characterization and risk factors for	Mixed film and digital
interval breast cancers in a population-based breast cancer screening	0
program in Barcelona, Spain. Cancer Causes & Control 21(8): 1155-64	
Domingo 2014. Tumor phenotype and breast density in distinct	Mixed film and digital
categories of interval cancer: results of population-based	
mammography screening in Spain. Breast Cancer Research 16(1): R3	
mammography screening in Spain. Breast Cancer Research 16(1): R3	

Elmore 2004. The association between obesity and screening	Film
mammography accuracy. Archives of Internal Medicine 164(10): 1140-	
7	
, Henderson 2015. Performance of digital screening mammography	Subset of Nelson sample
among older women in the United States. Cancer 2015; 121 (9): 1379-	
86.	
Holm 2015. Risk factors and tumor characteristics of interval cancers	Film
by mammographic density. Journal of Clinical Oncology 33(9): 1030-	
1037	
Kavanagh 2008. Using mammographic density to improve breast	Film
cancer screening outcomes. Cancer Epidemiology, Biomarkers &	
Prevention 17(10): 2818-24	
Kim 2017. Analysis of Participant Factors That Affect the Diagnostic	Not stated to be digital
Performance of Screening Mammography: A Report of the Alliance for	
Breast Cancer Screening in Korea. Korean Journal of Radiology 18(4):	
624-631	
Ko 2013. Comparison of new and established full-field digital	Mixed screening and high-risk
mammography systems in diagnostic performance. Korean Journal of	women
Radiology 14(2): 164-70	
Krishnan 2016. Mammographic density and risk of breast cancer by	Film (same cohort as Baglietto)
mode of detection and tumor size: a case-control study. Breast Cancer	
Research 18(1): 63	
Lowery 2011. Complementary approaches to assessing risk factors for	Film
interval breast cancer. Cancer Causes & Control 22(1): 23-31	
Malaj 2016. Synergy in combining findings from mammography and	Not screening population
ultrasonography in detecting malignancy in women with higher density	
breasts and lesions over 2 cm in Albania. Wspolczesna Onkologia 2016;	
20(6): 475-480	
Mandelson 2000. Breast density as a predictor of mammographic	Film
detection: comparison of interval- and screen-detected cancers.	
Journal of the National Cancer Institute 92(13): 1081-7	
McDonald 2016. Performance of DWI as a Rapid Unenhanced	Not density by interval cancer
Technique for Detecting Mammographically Occult Breast Cancer in	
Elevated-Risk Women With Dense Breasts. AJR. American Journal of	
Roentgenology 207(1): 205-16	
Morimoto 2000. Breast cancer screening by mammography in women	Not stated to be digital (pre-
aged under 50 years in Japan. Anticancer Research 20(5C): 3689-94	March 1999)
Muttarak 2006. Breast carcinomas: why are they missed? Singapore	Film
Medical Journal 47(10): 851-7	
Nederend 2014. Impact of the transition from screen-film to digital	Does not report suitable
screening mammography on interval cancer characteristics and	outcomes
treatment - a population based study from the Netherlands. European	
Journal of Cancer 2014; 50(1): 31-9	
Nickson 2009. Tumour size at detection according to different	Film
measures of mammographic breast density. Journal of Medical	
Screening 16(3): 140-6	
Olsen 2009. Breast density and outcome of mammography screening:	Film
a cohort study. British Journal of Cancer 100(7): 1205-8	
Sanders 2016 (Screening subset). Impact of the New Jersey Breast	Mixed screening/high risk
Density Law on Imaging and Intervention Volumes and Breast Cancer	population

Diagnosis. Journal of the American College of Radiology 13(10): 1189- 1194	
Sardanelli 2017. Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Israel, Lithuania, Moldova, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland and Turkey. European Radiology 27(7): 2737-2743	Question 2b but not a systematic review
Sawada 2017. Digital volumetric measurement of mammographic density and the risk of overlooking cancer in Japanese women. Breast Cancer 25: 25.	Mixed screening/ diagnostic population
Starikov 2016. 2D mammography, digital breast tomosynthesis, and ultrasound: which should be used for the different breast densities in breast cancer screening? Clinical Imaging 40(1): 68-71.	Question 2b but not a systematic review
van der Waal 2017. Breast cancer screening effect across breast density strata: A case-control study. International Journal of Cancer 140(1): 41-49	Film
Virnig 2009. Diagnosis and management of ductal carcinoma in situ (DCIS). Evidence Report/Technology Assessment 185: 1-549.	No eligible outcomes
Wanders 2017. The effect of volumetric breast density on the risk of screen-detected and interval breast cancers: a cohort study. Breast Cancer Research 19(1): 67	Duplicate (same cohort as Wanders 2017 ⁷ with slightly fewer women)
Wang 2000. The evaluation of false negative mammography from malignant and benign breast lesions. Clinical Imaging 24(2): 96-103	Film
Wang 2001. Interval cancers in the Norwegian breast cancer screening program: frequency, characteristics and use of HRT. International Journal of Cancer 94(4): 594-8	Film
Wang 2013. Effects of age, breast density and volume on breast cancer diagnosis: a retrospective comparison of sensitivity of mammography and ultrasonography in China's rural areas. Asian Pacific Journal of Cancer Prevention: Apjcp 14(4): 2277-82	Not stated to be digital mammography
Weber 2016. Characteristics and prognosis of interval cancers after biennial screen-film or full-field digital screening mammography. Breast Cancer Research and Treatment 2016; 158(3): 471-483.	Not screening population – all had interval cancer
Weir R, et al. Risk factors for breast cancer in women. NZHTA Report 2007; 10(2).	No eligible outcomes (no unadjusted or only age-adjusted outcomes reported)
White 2004. Biennial versus annual mammography and the risk of late- stage breast cancer. Journal of the National Cancer Institute 96(24): 1832-9	Not stated to be digital

Study	Reason for exclusion
Bowles 2016. The Use of Ultrasound in Breast Cancer Screening of	Systematic review
Asymptomatic Women with Dense Breast Tissue: A Narrative Review. Journal	
of Medical Imaging and Radiation Sciences 47(3 Supplement): S21-S28	

Brem 2015. Assessing improvement in detection of breast cancer with three-	Duplicate (already
dimensional automated breast US in women with dense breast tissue: the	included in USPTF review)
SomoInsight Study. Radiology 274(3): 663-73	
Dong, H., et al. Improved Performance of Adjunctive Ultrasonography After	Not mammography
Mammography Screening for Breast Cancer Among Chinese Females. Clinical	negative
Breast Cancer 2017; 15:15.	
Elizalde 2016. Additional US or DBT after digital mammography: which one is	Not a screening
the best combination? Acta Radiologica 57(1): 13-8	population
Giger, M. L., et al. Automated Breast Ultrasound in Breast Cancer Screening of	Not mammography
Women With Dense Breasts: Reader Study of Mammography-Negative and	negative
Mammography-Positive Cancers. AJR. American Journal of Roentgenology	_
2016; 206(6): 1341-50.	
Kumar, J. U., et al. Journal of Clinical and Diagnostic Research JCDR 2017;	Mixed symptomatic/
11(8): TC29-TC32	asymptomatic women
Lee 2016. Non-mass lesions on screening breast ultrasound. Medical	Not a screening
Ultrasonography 18(4): 446-451	population
Malaj 2016. Synergy in combining findings from mammography and	Not screening population
ultrasonography in detecting malignancy in women with higher density breasts	
and lesions over 2 cm in Albania. Wspolczesna Onkologia 2016; 20(6): 475-480	
Ohuchi, N., et al. Sensitivity and specificity of mammography and adjunctive	Women with dense
ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer	breasts not shown
Randomized Trial (J-START): a randomised controlled trial. Lancet 2016;	separately
387(10016): 341-8.	
Omidiji, O. A., et al. Breast cancer screening in a resource poor country:	Women with dense
Ultrasound versus mammography. Ghana Medical Journal 2017; 51(1): 6-12	breasts not shown
	separately
Padia 2017. Detecting Breast Cancer with a Dual-Modality Device. Diagnostics	Ineligible outcome
7(1): 18	
Siu 2016. Screening for Breast Cancer: U.S. Preventive Services Task Force	Summary of USPTF
Recommendation Statement. Annals of Internal Medicine 164(4): 279-96	review, not primary or
	independent study
Vourtsis, A., et al. The performance of 3D ABUS versus HHUS in the	Mixed screening/
visualisation and BI-RADS characterisation of breast lesions in a large cohort of	diagnostic mammograms
1,886 women. European Radiology 2017; 21: 21.	_
Zhao 2015. Limitations of mammography in the diagnosis of breast diseases	Not a screening
compared with ultrasonography: a single-center retrospective analysis of 274	population
cases. European Journal of Medical Research 20: 49	
cases. European Journal of Medical Research 20: 49	

Study	Reason for exclusion
Abbey, C. K. 9787. A Utility/Cost Analysis of Breast Cancer Risk Prediction	Not ultrasound
Algorithms	
Blue Cross Blue Shield, Association 2014. Special report: screening asymptomatic women with dense breasts and normal mammograms for breast cancer. Technology Evaluation Center Assessment Program. Executive Summary 2014; 28(15): 1-2.	Not available
Bowles 2016. The Use of Ultrasound in Breast Cancer Screening of Asymptomatic	Included film and
Women with Dense Breast Tissue: A Narrative Review	digital studies; none of
	the cost studies were

	in studies using digital mammograms
Brancato, B. 2007. Negligible advantages and excess costs of routine addition of	Not a screening
breast ultrasonography to mammography in dense breasts	population
Corsetti 2006. Role of ultrasonography in detecting mammographically occult	A subset of the
breast carcinoma in women with dense breasts	women in Corsetti
	2008
Corsetti 2008. Breast screening with ultrasound in women with mammography-	Not stated to be
negative dense breasts: Evidence on incremental cancer detection and false	digital mammography
positives, and associated cost. European Journal of Cancer 2008; 44(4): 539-544	(Corsetti 2011 paper
	states they used film
	2001-2006)
De Felice, C. 2007. Diagnostic utility of combined ultrasonography and	Film not digital
mammography in the evaluation of women with mammographically dense breasts	mammography
Duffy 2017. Addition of ultrasound to mammography in the case of dense breast	Systematic review/
tissue: Systematic review and meta analysis	meta-analysis not
	cost-effectiveness
	study
Freer 2015. Breast cancer screening in the era of density notification legislation:	Not cost-effectiveness
summary of 2014 Massachusetts experience and suggestion of an evidence-based	
management algorithm by multi-disciplinary expert panel	
Gartlehner 2013. Adjunct ultrasonography for breast cancer screening in women	Systematic review but
at average risk: A systematic review	the authors found no
	studies that met their
	inclusion criteria
Giuliano, V. 2013 Volumetric breast ultrasound as a screening modality in	Duplicate
mammographically dense breasts	
Hooley 2012. Screening US in patients with mammographically dense breasts:	Mixed diagnostic/
Initial experience with Connecticut public act 09-41. Radiology 2012; 265(1): 59-69	screening population
Merry 2014. Update on Screening Breast Ultrasonography. Radiologic Clinics of	Not cost-effectiveness
North America 2014; 52(3): 527-537.	
Sobotka, J. 2015. Breast Density Legislation: Discussion of Patient Utilization and	Not full economic
Subsequent Direct Financial Ramifications for Insurance Providers	evaluation
Venturini 2013. Tailored breast cancer screening program with microdose	Women with dense
mammography, US, and MR Imaging: short-term results of a pilot study in 40-49-	breasts not shown
year-old women. Radiology 2013; 268(2): 347-55.	separately

Appendix 4 Data extraction form and tables with quality assessment

Data extraction template for questions 1, 2 and 3

Ultrasound as an add-on test after negative mammography screening in

women with dense breasts

DATA EXTRACTION FORM

Review Details

	Study details
Citations for all linked publications from	
the same study/cohort	
First author surname (main paper for the	
study)	
Year of publication (main paper for the	
study)	
(NB 2000 on for Q1/2; 2005 on for Q3/4)	
Study/cohort name/ identifier	
Country	
Study design	
Study setting	
Number of centres	
Total study duration (including length of	
follow up if applicable)	
Funding (government/private/ manufacturer/	
other - specify)	
Competing interests / Role of sponsor	

Aim of the study

	Methods of the study				
Recruitment dates					
Inclusion criteria					
Exclusion criteria					
Recruitment method (e.g.					
consecutive participants)					
Statistical methods					

	Baseline characteristics of women
General description of sample:	

141

Reviewer

	Whole sample	Subgroup 1 (specify)	Subgroup 2 (specify)
Enrolled			
Excluded pre-baseline			
(plus reason)			
Sample size included at			
baseline			
(NB >100 for Q1)			
Excluded from analysis			
(baseline minus			
analysed), plus reason			
Sample size analysed			
Age (mean; SD or range)			
BMI (mean; SD or range)			
Ethnicity			
Menopausal status			
Comments on differences be	etween study arms:		

Density measures: Q1/Q2						
	Measure 1	Measure 2	Measure 3			
Density measure(s) used (name/description/version number):						
Does mammographic density measure use oblique or cranio-caudal view?						
Does the density measure use texture analysis?						
Density classifications (with description): n (%) in each group						
Comparison Q1/2: density	measure 1 vs. density m	easure 2, or left vs. right	breast etc.			
General description of rate		, C				
	Whole sample	Subgroup 1	Subgroup 2			
Age (mean; measure of deviation)						
Profession						
Experience						
Raters blinded?						
Comments on differences b	etween study arms:					

Interventions and comparators: Q3: mammography + ultrasound vs. mammography					
	Mammography	Mammography + ultrasound			
		NB: describe whether ultrasound			
	NB: mammography must be	is			
	digital not film. State whether	A) automated:			
	CR (computed radiography) or	A i) included in the			
	DR (digital radiography)	mammography plate or			
		A ii) a separate machine; or			
		B) handheld (must include whole			
		breast).			

	State whether a high frequency probe was used; must be > 5MHz
Description of index test /comparator:	
1 or 2 screeners	
Experience of the operators	
Whether CAD was used or not (if automated)	
Quality of the ultrasound / mammogram	
Number receiving index test/comparator (%)	
Reference standard used	
Number receiving reference standard (%)	
Follow up (years)	

Results: Question 1: What are the test-retest and inter-rater reliability of available methods to measure mammographic breast density? What is the concordance between different methods of measuring mammographic breast density?

Inter-rater reliability

(SPECIFY MEASURE)	Reader 2					
Reader 1	Category 1 (specify)	Category 2 (specify)	Category 3 (specify)	Category 4 (specify)	Total	Test statistic
Category 1 (specify)						
Category 2 (specify)						
Category 3 (specify)						
Category 4 (specify)						
Total						

ADD MORE (AND ADAPT) TABLES AS REQUIRED

Test-retest reliability

(SPECIFY MEASURE)								
Time between assessme	Time between assessments:							
Domain/category	First assessment score	Second assessment score	Test statistic 1 (specify)	Test statistic 2 (specify)				
Category 1 (specify)								
Category 2 (specify) Category 3 (specify)								
Category 4 (specify)								

ADD MORE (AND ADAPT) TABLES AS REQUIRED

Concordance

Measure 2 (specify)					Test statistic	
Measure 1 (specify)	Category 1 (specify)	Category 2 (specify)	Category 3 (specify)	Category 4 (specify)	Total	
Category 1 (specify)						
Category 2 (specify)						
Category 3 (specify)						
Category 4 (specify)						
Total						

ADD MORE (AND ADAPT) TABLES AS REQUIRED

Results: Question 2: Is mammographic breast density a risk factor for cancers being missed during screening (false negatives/interval cancers)?

(specify density)	neasure)						
Outcome (missed cancer, FN or interval)	Density category			Odds ratio, risk ratio, absolute risk, mean difference (specify) (95% CI)		Covariates adjusted for	
	(specify)	(specify)	(specify)	Total	Crude	Adjusted	
Event (specify)							
Nonevent							
(specify)							
Total							

ADD MORE (AND ADAPT) TABLES AS REQUIRED

(specify densit	y measure)						
Outcome (cancer)	Density ca	Density category				ntio, risk bsolute ean ice) I)	Covariates adjusted for
	(specify)	(specify)	(specify)	Total	Crude	Adjusted	
Cancer							
No cancer							
Total							

ADD MORE (AND ADAPT) TABLES AS REQUIRED

Distribution of cancer type by risk group (for each test)

(specify density	Invasive	DCIS	Total
measure)			
Category 1 (specify)			
Category 2 (specify)			
Category 3 (specify)			
Category 4 (specify)			

ADD MORE (AND ADAPT) TABLES AS REQUIRED

Results: Question 3: What is the test accuracy of ultrasound following mammography in comparison to mammography to detect breast cancer in women with dense breasts?

Cancer Detection

	Disease positive	Disease negative	Total	
Mammography only	y			
Screening test				(positive predictive
(specify) positive				value here)
Screening test				(negative predictive
(specify) negative				value here)
Total				
	(sensitivity here)	(specificity here)		
Recall rate:				
Mammography plus	s Ultrasound			
Screening test				(positive predictive
(specify) positive				value here)
Screening test				(negative predictive
(specify) negative				value here)
Total				
	(sensitivity here)	(specificity here)		
Recall rate				

Recall rate

ADD MORE (AND ADAPT) TABLES AS REQUIRED

Cancer Detection

	Mammograp			Mammography + ultrasound		tween hy and hy +
	N/Total	Estimate (95% CI)	N/Total	Estimate (95% CI)	N/Total	Estimate (95% CI)
Sensitivity						
Specificity						
PPV						
NPV						
Recall rate						

ADD MORE (AND ADAPT) TABLES AS REQUIRED

Characteristics of extra cancers detected by US only and mammography only

	Cancers detected by mammography only	Cancers detected by mammography plus ultrasound only	All screen detected cancers
Number of participants			
Number screened			
Number of cancers			
Number of invasive cancers			
Number of DCIS			
Invasive cancer grade			
High			
Intermediate			

Low		
Low Unknown		
Unknown		
DCIS grade		
High		
Intermediate	 	
Low	 	
Unknown	 	
Tumour size, mm (mean; SD or		
range)		
Stage		
No. of stage 0 cancers		
No. of stage IA or IB cancers		
No. of stage IIA or IIB cancers		
No. of stage IIIA, IIB, or IIIC		
cancers		
No. of stage IV cancers		
No. of unknown cancers		
ER/PR status		
ER+/PR+		
ER+/PR-		
ER-/PR-		
ER-/PR+		
Lymph node status		
Positive		
Negative		
Unknown		
HER2		
Positive		
Negative		
Unknown		
Breast density		
Category 1 (specify)		
Category 2 (specify)		
Category 3 (specify)		
Category 4 (specify)		
category (specify)		
Immunophenotype		
Luminal A		
Luminal B		
Basal-like		
Unclassified		
Unknown		
ADD MODE (AND ADADT) TADI		

ADD MORE (AND ADAPT) TABLES AS REQUIRED

Results: Question 4: For women attending breast screening in the UK, what are the cost-consequences of adding density measurements, and then ultrasound for those found to have high mammographic breast density?					
	Mammography	Density measurement + ultrasound	p value		
Time taken for screening process (minutes)					
Cost per extra case detected					
Cost per extra case detected by type (invasive/nodal involvement etc)					

Conclusions/limitations

Study author conclusions	
Limitations noted by the	
study authors	
Reviewer notes	
Abbreviations	BI-RADS: Breast Imaging-Reporting and Data System

Data extraction table for question 4

Table a. Characteristics and findings of cost-effectiveness studies investigating supplemental ultrasound in women with mammography-negative dense breasts

Author (Year)	Type of economic evaluation & model	Population studied	Comparators	Methods (perspective, time horizon and discount rate)	Methods (costs, outcomes, ICER and sensitivity analyses)

Appendix 5 Quality assessment tools

Question 1: Quality Appraisal of Diagnostic Reliability (QAREL) Checklist

Item	Yes	No	Unclear	N/A
1. Was the test evaluated in a sample of subjects who were				
representative of those to whom the authors intended the results to				
be applied?				
2. Was the test performed by raters who were representative of those				
to whom the authors intended the results to be applied?				
3. Were raters blinded to the findings of other raters during the study?				
4. Were raters blinded to their own prior findings of the test under evaluation?				
5. Were raters blinded to the results of the reference standard for the				
target disorder (or variable) being evaluated?				
6. Were raters blinded to clinical information that was not intended to				
be provided as part of the testing procedure or study design?				
7. Were raters blinded to additional cues that were not part of the				
test?				
8. Was the order of examination varied?				
9. Was the time interval between repeated measurements compatible				
with the stability (or theoretical stability) of the variable being				
measured?*				
10. Was the test applied correctly and interpreted appropriately?				
11. Were appropriate statistical measures of agreement used?**				
Total				

* <2 years

** Acceptable: Bland-Altman, ICC (for continuous data), kappa (for categorical/ordinal data – should be weighted, with an explanation of what weights were applied). Unacceptable: correlation coefficients on their own, significance testing of differences between coefficients.

Good-quality diagnostic reliability studies used a representative sample of subjects and raters, had blinded assessment of the reference standard (where applicable) and also blinded raters to nonclinical cues and to others ratings, used a varied examination order, an appropriate time interval between repeated measures, appropriate approaches to application and interpretation of the test, and used appropriate statistical measures of agreement. Diagnostic reliability studies were downgraded to fair if they were unable to meet the majority of good-quality criteria.

Question 2: QUIPS

Quality assessment - Quality in Prognostic Studies (QUIPS) tool				
Biases	Issues to consider for judging	Study methods &	Rating of	Rating of
	overall rating of risk of bias	comments	reporting	risk of bias

Instructions to assess the risk of each potential bias:	These issues will guide your thinking and judgment about the overall risk of bias within each of the 6 domains. Some 'issues' may not be relevant to the specific study or the review research question. These issues are taken together to inform the overall judgment of potential bias for each of the 6 domains.	Provide comments or text excerpts in the white boxes below, as necessary, to facilitate the consensus process that will follow	Yes, partial, no or unsure.	High, Moderate, or Low for 6 domains
1. Study	Goal: To judge the risk of selection bi	ias (likelihood that rel	ationship betw	veen PF and
Participation	outcome is different for participants a	nd eligible non-partic	ipants).	•
Source of target	The source population or population			
population	of interest is adequately described			
Method used to	The sampling frame and recruitment			
identify	are adequately described, including			
population	methods to identify the sample			
	sufficient to limit potential bias			
	(number and type used, e.g., referral			
D	patterns in health care)			
Recruitment period	Period of recruitment is adequately described			
Place of	Place of recruitment (setting and			
recruitment	geographic location) are adequately			
i cei uninent	described			
Inclusion and	Inclusion and exclusion criteria			
exclusion criteria	adequately described (e.g. including explicit diagnostic criteria or zero time description)			
Adequate study	There is adequate participation in			
participation	the study by eligible individuals			
Baseline	The baseline study sample (i.e.,			
characteristics	individuals entering the study) is adequately described			
Summary Study participation	The study sample represents the population of interest on key characteristics, sufficient to limit potential bias of the observed relationship between PF and outcome.			
2. Study Attrition	Goal: To judge the risk of attrition bid outcome are different for completing of		-	een PF and
Proportion of	Response rate (i.e., proportion of			
baseline sample	study sample completing the study			
available for analysis	and providing outcome data) is adequate.			
Attempts to	Attempts to collect information on			
collect	participants who dropped out of the			
information on	study are described.			
participants who				
dropped out				
Reasons and	Reasons for loss to follow-up are			
potential impact	provided.			

of auto of a lost to	1			
of subjects lost to				
follow-up	Destation and the faile second			
Outcome and	Participants lost to follow-up are			
prognostic factor	adequately described			
information on	There are no important differences			
those lost to	between participants who completed			
follow-up	the study and those who did not.			
Study Attrition	Loss to follow-up (from baseline			
Summary	sample to study population			
	analyzed) is not associated with key			
	characteristics (i.e., the study data			
	adequately represent the sample)			
	sufficient to limit potential bias to			
	the observed relationship between			
2 D ('	PF and outcome.	. 1 • 1 . 1 . 1	DE	1
3. Prognostic	Goal: To judge the risk of measuremen			ured
Factor	(differential measurement of PF related	a to the level of outco	me).	
Measurement				
Definition of the	A clear definition or description of			
PF	'PF' is provided (e.g., including dose,			
	level, duration of exposure, and			
	clear specification of the method of			
	measurement)			
Valid and	Method of PF measurement is			
Reliable	adequately valid and reliable to limit			
Measurement of	misclassification bias (e.g., may			
PF	include			
	relevant outside sources of			
	information on measurement			
	properties, also characteristics, such			
	as blind measurement and limited			
	reliance on recall).			
	Continuous variables are reported or			
	appropriate cut-points (i.e., not data-			
Mathadaad	dependent) are used.			
Method and	The method and setting of measurement of PF is the same for			
Setting of PF Measurement				
	all study participants. Adequate proportion of the study			
Proportion of data on PF	sample has complete data for PF			
ata on PF available for	variable.			
available for analysis				
Method used for	Appropriate methods of imputation			
missing data	are used for missing 'PF' data			
PF Measurement	PF is adequately measured in study			
Summary	participants to sufficiently limit			
Sammar y	potential bias.			
	potential blas.			
4. Outcome	Goal: To judge the risk of bias related	to the measurement of	of outcome (di	fferential
Measurement	measurement of outcome related to the			jerennai
Definition of the	A clear definition of outcome is	Suscine ievel 0j I I',		
Outcome	provided, including duration of			
Juicome	follow-up and level and extent of the			
	outcome construct.			
	Sateonie construct.			
L				

Valid and	The method of outcome			
Reliable	measurement used is adequately			
Measurement of	valid and reliable to limit			
Outcome	misclassification bias (e.g., may			
	include relevant outside sources of			
	information on measurement			
	properties, also characteristics, such			
	as blind measurement and			
	confirmation of outcome with valid			
	and reliable test).			
Method and	The method and setting of outcome			
Setting of	measurement is the same for all			
Outcome	study participants.			
Measurement				
Outcome	Outcome of interest is adequately			
Measurement	measured in study participants to			
Summary	sufficiently limit potential bias			
J				
5. Study	Goal: To judge the risk of bias due to c	onfounding (i.e. the i	effect of PF is	distorted hv
Confounding	another factor that is related to PF and		,jjeet oj 11 to	andrea e j
Important	All important confounders,			
Confounders	including treatments are measured.			
Measured	mendaning dediments die medsared.			
Definition of the	Clear definitions of the important			
confounding	confounders measured are provided			
factor	(e.g., including dose, level, and			
lacion	duration of exposures).			
Valid and	Measurement of all important			
Reliable	confounders is adequately valid and			
Measurement of	reliable (e.g., may include relevant			
Confounders	outside sources of information on			
Comounders	measurement properties, also			
	characteristics, such as blind			
	measurement and limited reliance on			
	recall)			
Method and	,			
	The method and setting of confounding measurement are the			
Setting of				
Confounding Measurement	same for all study participants			
Method used for	A management of the design and diff			
	Appropriate methods are used if			
missing data	imputation is used for missing			
Annemist	confounder data			
Appropriate	Important potential confounders are			
Accounting for	accounted for in the study design			
Confounding	(e.g., matching for key variables,			
	stratification, or initial assembly of			
	comparable groups)			
	Important potential confounders are			
	accounted for in the analysis (i.e.,			
	appropriate adjustment)			
Study	Important potential confounders are			
Confounding	appropriately accounted for, limiting			
Summary	potential bias with respect to the			
	relationship between PF and			
	outcome.			
151				

6. Statistical	Goal: To judge the risk of bias related to the statistical analysis and presentation of	
Analysis and	results	
Reporting		
Presentation of	There is sufficient presentation of	
analytical	data to assess the adequacy of the	
strategy	analysis	
Model	The strategy for model building (i.e.,	
development	inclusion of variables in the	
strategy	statistical model) is appropriate and	
	is based on a conceptual framework	
	or model.	
	The selected statistical model is	
	adequate for the design of the study	
Reporting of	There is no selective reporting of	
results	results.	
Statistical	The statistical analysis is appropriate	
Analysis and	for the design of the study, limiting	
Presentation	potential for presentation of invalid	
Summary	or spurious results	

Question 3:

USPTF criteria for assessing internal validity of individual diagnostic accuracy studies

Criteria:	Notes for completion of assessment	Adequatein this study? Yes/No/Unsure/N/A (Yes = a good quality outcome)
Screening test relevant, available for primary	Screening test = Digital	
care, and adequately described	mammography; HHUS or	
	ABUS (whole breast)	
Credible reference standard, performed	Reference standard =	
regardless of test results	Biopsy/histology result for	
	breast cancer; follow up for	
	at least 1 year for interval	
	cancers/true negatives	
Reference standard interpreted independently	Requires follow up for	
of screening test	interval cancers, not just	
	histology/biopsy	
Indeterminate results handled in a reasonable	Short term repeat exams are	
manner	OK	
Spectrum of patients included in study	Must be a screening	
	population; OK to include	
	or exclude prior breast	
	cancer, high risk women,	
	prior breast surgery as part	
	of the population (but	
	population must not be	
	exclusively high risk,	
	symptomatic, or diagnostic)	
Sample size	No minimum sample size	
	but quality downgraded if	
	<100 people	

Reliable screening test	Mammography and ultrasound can be assumed reliable in this context; excludes untested experimental methods	
Global rating of internal validity		

Definition of ratings based on above criteria:

Good: Evaluates relevant available screening test; uses a credible reference standard; interprets reference standard independently of screening test; assesses reliability of test; has few or handles indeterminate results in a reasonable manner; includes large number (>100) of broad-spectrum patients with and without disease **Fair:** Evaluates relevant available screening test; uses reasonable although not best standard; interprets reference standard independent of screening test; has moderate sample size (50 to 100 subjects) and a "medium" spectrum of patients

Poor: Has a fatal flaw, such as: Uses inappropriate reference standard; improperly administers screening test; biased ascertainment of reference standard; has very small sample size or very narrow selected spectrum of patients

USPTF criteria for assessing external validity (generalizability) of individual studies

Each study that is identified as providing evidence to answer a key question is assessed according to its external validity (generalizability), using the following criteria.

Criteria:	Notes for completion of assessment	Adequate in this study? Yes/No/Unsure/N/A (Yes
		= a good quality outcome
		so all items are scored in
	. 1 2 1 2	the same direction)
Study population: The degree to which a		
they were selected from a larger eligible		ent persons who are likely
to seek or be candidates for the preventive		
Demographic characteristics (i.e., age,	Must include majority of women in	
sex, ethnicity, education, income): The	age range 50-70; downgrade if >50%	
criteria for inclusion/exclusion or	outside this age range	
nonparticipation do not encompass the		
range of persons who are likely to be		
candidates for the preventive service in		
the U.S. primary care population.		
Comorbid conditions: The frequency of	Downgrade if majority high risk	
comorbid conditions in the study	women	
population does not represent the		
frequency likely to be encountered in		
persons who seek the preventive		
service in the U.S. primary care		
population.		
Special inclusion/exclusion criteria:	Flag up ethnicity	
There are other special	-	
inclusion/exclusion criteria that make		
the study population not representative		
of the U.S. primary care population.		
Refusal rate (i.e., ratio of included to	Downgrade if refusal rate >10%	
not included but eligible participants):	-	
The refusal rate among eligible study		
subjects is high, making the study		
population not representative of the		

U.S. primary agra population avan		
U.S. primary care population, even		
among eligible enrollees.		
Adherence (i.e., run-in phase, frequent	Flag up screening interval (UK = 3	
contact to monitor adherence): The	years)	
study design has features that may		
increase the effect of the intervention in		
the study more than would be expected		
in a clinically observed population.		
Stage or severity of disease: The	Should be a general screening	
selection of subjects for the study	sample: OK to include or exclude	
includes persons at a disease stage that	prior breast cancer, high risk women,	
is earlier or later than would be found	prior breast surgery as part of the	
in persons who are candidates for the	population (but population must not	
preventive service.	be exclusively high risk,	
	symptomatic, or diagnostic)	
Recruitment: The sources for recruiting	Should be general screening	
subjects for the study and/or the effort	population	
and intensity of recruitment may distort		
the characteristics of the study subjects		
in ways that could increase the effect of		
the intervention as it is observed in the		
study.		
Study setting: The degree to which the c	linical experience in the setting in which	the study was conducted is
likely to be reproduced in other settings:	1 0	<u> </u>
Health care system: The clinical	Universal screening programme or	
experience in the system in which the	selected	
study was conducted is not likely to be		
the same as that experienced in other		
systems (e.g., the system provides		
essential services for free when these		
services are only available at a high		
cost in other systems).		
Country: The clinical experience in the	Flag up country	
country in which the study was	ring up country	
conducted is not likely to be the same		
as that in the United States (e.g.,		
services available in the United States		
are not widely available in the other		
country or vice versa).		
Selection of participating centers: The	General screening programme or	
clinical experience in which the study	tertiary centre where problematic	
	cases referred in	
was conducted is not likely to be the same as in offices/hospitals/settings		
where the service is delivered to the		
U.S. primary care population (e.g., the		
center provides ancillary services that		
are not generally available).	Should be a routing array in a routing	
Time, effort, and system cost for the	Should be a routine screening service	
intervention: The time, effort, and cost		
to develop the service in the study is		
more than would be available outside		
the study setting.		
Study providers: The degree to which the	he providers in the study have the skills a	nd expertise likely to be
available in general settings:		

Training to implement the intervention: Providers in the study are given special training not likely to be available or required in U.S. primary care settings.	Should be general screening service not unusually highly trained operators	
Expertise or skill to implement the intervention: Providers in the study have expertise and/or skills at a higher level than would likely be encountered in typical settings.	Should be general screening service not unusually highly skilled operators	
Ancillary providers: The study intervention relies on ancillary providers who are not likely to be available in typical settings. Global rating of external validity	Should be radiologists/radiographers	

USPTF Global rating of external validity (generalisability)

External validity is rated "good" if:

• The study differs minimally from the U.S. primary care population/setting/providers and only in ways that are unlikely to affect the outcome; it is highly probable (>90%) that the clinical experience with the intervention observed in the study will be attained in the U.S. primary care setting.

External validity is rated "fair" if:

• The study differs from the U.S. primary care population/setting/providers in a few ways that have the potential to affect the outcome in a clinically important way; it is moderately probable (50% to 89%) that the clinical experience with the intervention observed in the study will be attained in the U.S. primary care setting.

External validity is rated "poor" if:

• The study differs from the U.S. primary care population/setting/providers in many ways that have a high likelihood of affecting the clinical outcome; probability is low (<50%) that the clinical experience with the intervention observed in the study will be attained in the U.S. primary care setting.

QUADAS-2 (adjusted)

First author surname and year of publication:

Name of first reviewer: Name of second reviewer:

Phase 1: State the review question:

What is the test accuracy of ultrasound following mammography in comparison to mammography to detect cancer in women with dense breasts?

Patients (setting, intended use of index test, presentation, prior testing): women with mammographically normal, but dense breasts

Index test(s): Ultrasound

Reference standard and target condition: Biopsy/histology for cancer; follow up for at least 1 year for negative screen

Phase 2: Draw a flow diagram for the primary study

Phase 3: Risk of bias and applicability judgments

QUADAS-2 is structured so that 4 key domains are each rated in terms of the risk of bias and the concern regarding applicability to the research question (as defined above). Each key domain has a set of signalling questions to help reach the judgments regarding bias and applicability.

DOMAIN 1: PATIENT SELECTION		
A. Risk of Bias		
Describe methods of patient selection:		
+ Was a consecutive or random sample of patients enrolled?	Yes/No/Unclear	
+ Was a consecutive or random sample of women who screened	negative Yes/No/Unclear	
AND had dense breasts followed up with ultrasound?		
+ Was a case-control design avoided?	Yes/No/Unclear	
+ Did the study avoid inappropriate exclusions?	Yes/No/Unclear	
Could the selection of patients have introduced bias?	RISK: LOW/HIGH/UNCLEAR	
B. Concerns regarding applicability		
Describe included patients (prior testing, presentation, intended use of index test and setting):		
	-	
Is there concern that the included patients do not match the		
review question?	CONCERN: LOW/HIGH/UNCLEAR	

DOMAIN 2: INDEX TEST (mammography)

156

If more than one index test was used, please complete for each test.		
A. Risk of Bias		
Describe the index test and how it was conducted and interpreted:		
+ Were the index test results interpreted without knowledge of the results of the reference standard?	Yes/No/Unclear	
Could the conduct of the index test have introduced bias?	RISK: LOW/HIGH/UNCLEAR	
B. Concerns regarding applicability		
Is there concern that the index test, its conduct, or		
interpretation differ from the review question?	CONCERN: LOW/HIGH/UNCLEAR	

o/Unclear
: LOW/HIGH/UNCLEAR
CERN: LOW/HIGH/UNCLEAR
:

DOMAIN 3: REFERENCE STANDARD		
A. Risk of Bias		
Describe the reference standard and how it was conducted and interpreted:		
+ Is the reference standard likely to correctly classify the target condition?	Yes/No/Unclear	
+ Were the reference standard results interpreted without knowledge of the results of the index test?	Yes/No/Unclear	
Could the reference standard, its conduct, or its interpretation have introduced bias?	RISK: LOW/HIGH/UNCLEAR	
B. Concerns regarding applicability		
Is there concern that the target condition as defined by the reference standard does not match the review question?	CONCERN: LOW/HIGH/UNCLEAR	

DOMA	IN 4: FLOW AND TIMING
А.	Risk of Bias
157	

Describe any patients who did not receive the index test(s) and/or reference standard or who were excluded from the 2x2 table (refer to flow diagram):

Describe the time interval and any intervention between (1) the two index tests (mammography versus ultrasound) and (2) the index tests(s) and reference standard:

+ Was there an appropriate interval between the two index	Yes/No/Unclear
tests? + Was there an appropriate interval between index test(s) and	Yes/No/Unclear
reference standard?	1 es/100/ Unclear
+ Did all patients receive a reference standard?	Yes/No/Unclear
+ Did all patients receive the same reference standard?	Yes/No/Unclear
+ Were all patients included in the analysis?	Yes/No/Unclear
Could the patient flow have introduced bias?	RISK: LOW/HIGH/UNCLEAR

Question 4: CHEERS

Critical appraisal of the economic evaluation studies using the CHEERS checklist (each column = 1 study)

CHEERS checklist ³³					
Title and abstract					
1 Title: Identify the study as an economic					
evaluation, or use more specific terms such as					
``cost-effectiveness analysis``, and describe the					
interventions compared.					
2 Abstract: Provide a structured summary of					
objectives, methods including study design and					
inputs, results including base case and					
uncertainty analyses, and conclusions.					
Introduction		T	1		
3 Background & objectives: Provide an explicit					
statement of the broader context for the					
study. Present the study question and its					
relevance for health policy or practice					
decisions.					
Methods	 		-		
4 Target Population and Subgroups: Describe					
characteristics of the base case population and					
subgroups analysed including why they were					
chosen.					
5 Setting and Location: State relevant aspects					
of the system(s) in which the decision(s)					
need(s) to be made.					

				i	
6 Study perspective: Describe the perspective					
of the study and relate this to the costs being					
evaluated.					
7 Comparators: Describe the interventions or					
strategies being compared and state why they					
were chosen.					
8 Time Horizon: State the time horizon(s) over					
which costs and consequences are being					
evaluated and say why appropriate.					
9 Discount Rate: Report the choice of discount					
rate(s) used for costs and outcomes and say					
why appropriate.					
10 Choice of Health Outcomes: Describe what					
outcomes were used as the measure(s) of					
benefit in the evaluation and their relevance					
for the type of analysis performed.					
11a Measurement of Effectiveness - Single					
Study-Based Estimates: Describe fully the					
design features of the single effectiveness					
study and why the single study was a sufficient					
source of clinical effectiveness data.					
11b Measurement of Effectiveness - Synthesis-					
based Estimates: Describe fully the methods					
used for identification of included studies and					
clinical effectiveness data synthesis of clinical					
effectiveness data.					
12 Measurement and Valuation of Preference-					
based Outcomes: If applicable, describe the					
population and methods used to elicit					
preferences for health outcomes.					
13a Estimating Resources and Costs - Single					
Study-based Economic evaluation: Describe					
approaches used to estimate resource use					
associated with the alternative interventions.					
Describe primary or secondary research					
methods for valuing each resource item in					
terms of its unit cost. Describe any					
adjustments made to approximate to					
opportunity costs.					
13b Estimating Resources and Costs - Model-					
based Economic Evaluation: Describe					
approaches and data sources used to estimate					
resource use associated with model health					
states. Describe primary or secondary research					
methods for valuing each resource item in					
terms of its unit cost. Describe any					
adjustments made to approximate to					
opportunity costs.					
14 Currency, Price Date and Conversion:					
Report the dates of the estimated resource					
quantities and unit costs. Describe methods for					
quantities and unit costs. Describe methods for				l	

adjusting estimated unit costs to the year of					
reported costs if necessary. Describe methods					
for converting costs into a common currency					
base and the exchange rate.					
15 Choice of Model: Describe and give reasons					
for the specific type of decision-analytic model					
used. Providing a figure to show model					
structure is strongly recommended.					
16 Assumptions: Describe all structural or					
other assumptions underpinning the decision-					
analytic model.					
17 Analytic Methods: Describe all analytic					
methods supporting the evaluation. This could					
include methods for dealing with skewed,					
missing or censored data, extrapolation					
methods, methods for pooling data,					
approaches to validate a model, & methods for					
handling population heterogeneity and					
uncertainty.					
Results					
18 Study parameters: Report the values,					
ranges, references, and if used, probability					
distributions for all parameters. Report reasons					
or sources for distributions used to represent					
uncertainty where appropriate. We strongly					
recommend the use of a table to show the					
input values.					
19. Incremental costs and outcomes: For each					
intervention, report mean values for the main					
categories of estimated costs and outcomes of					
interest, as well as mean differences between					
the comparator groups. If applicable, report					
incremental cost-effectiveness ratios.					
20a Characterizing Uncertainty - Single study-					
based economic evaluation: Describe the					
effects of sampling uncertainty for the					
estimated incremental cost and incremental					
effectiveness, parameters together with the					
impact of methodological assumptions.					
20b Characterizing Uncertainty - Model-based					
economic evaluation: Describe the effects on					
the results of uncertainty for all input					
parameters, and uncertainty related to the					
structure of the model and assumptions.					
21 Characterizing Heterogeneity: If applicable,					
report differences in costs, outcomes or in					
cost-effectiveness that can be explained by					
variations between subgroups of patients with					
different baseline characteristics or other					
observed variability in effects that are not		1			
reducible by more information.					

Discussion				
22 Study Findings, Limitations, Generalizability, and Current Knowledge: Summarize key study findings and describe how they support the conclusions reached. Discuss limitations and the generalizability of the findings and how the findings fit with current knowledge.				
Other				
23 Source of Funding: Describe how the study was funded and the role of the funder in the identification, design, conduct and reporting of the analysis. Describe other non-monetary sources of support.				
24 Conflicts of Interest: Describe any potential for conflict of interest among study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors' recommendations				

Key: y = yes, n = no, N/A = not applicable and * = partially completed

Appendix 6 Included studies

Question 1

Table a: Design and quality issues

	Study	Population (n)	Interventions/ Comparator	Outcome	No. centres; country	Quality summary	Sample rep.?	Readers rep.?	Time <2 years?	Limitations
1.	Abdolell 2013 ³⁷	Digital mammograms – no further information (n=138)	Densitas and visual percent density assessment	Inter-rater reliability; concordance between Densitas and visual assessment	1; Canada	Fair	Unclear	Yes	Unclear	The Pearson correlation coefficient (ρ) provides an inadequate, inflated, and overoptimistic measure of the level of agreement. This measure is not eligible for our review.
2.	Alshafeiy 2017 ⁴⁸	Consecutive women undergoing screening with digital 2D mammography and tomosynthesis with a negative or benign (category 1 and 2) outcome (n=309); mean (SD) age 65.7 ± 11.4 years (range, 35– 93 years).	BI-RADS 5th edition from digital 2D images	Interreader agreement	1; USA	Fair	No	Yes	Yes	Relatively small number of readers from a single institution; results may differ in a larger study with more readers. No reference standard for breast density

162

3.	Conant 2017 ¹⁷	Women with 2D bilateral MLO view sDM and standard dose "For presentation" DM images available (3668 women with 7336 MLO images)	BIRADS 5 th edition; LIBRA algorithm in DM	Analysis of variance to determine whether the automated percent density estimates for DM varied significantly according to the corresponding BIRADS breast density categories	1; USA	Fair	No	No	N/A	A single area-based density estimation method using data from a single institution
4.	Destounis 2017 ¹⁸	Women diagnosed with cancer within the screening programme; mean (SD) age 62.1 (11) (n=595)	BIRADS 4 th edition, from previous normal mammogram vs. Volpara v1.4.2 from previous normal mammogram if raw images available or contralateral breast if raw images not available	Agreement between visual BIRADS and automated density grade	1; USA	Fair	No	Unclear	Yes	Interval cancers not differentiated between true interval, missed or mammographically occult (i.e. masked by dense tissue).
5.	Ekpo 2016. ³⁶	Women who underwent DBT investigation in 2015 and had a prior DM obtained in 2014 (n=234)	BI-RADS 5 th edition	BI-RADS 5 th edition inter-reader reproducibility	1; Australia	Fair	No	Yes	Yes	The proportion of BIRADS D density category in the dataset is higher than that of a typical population distribution, as women that have DBT subsequent to

6.	Ekpo 2016. ¹⁹	Females who underwent screening mammography between March and July 2014 (n=292)	Quantra 2.0 vs. BIRADS 4th edition	Agreement between each radiologist and the majority report. Inter-reader agreement was assessed by comparing the first assessment of the radiologists in pairs. Intra-reader agreement was assessed by comparing the first and second	1; Australia	Good	Unclear	Yes	Yes	DM are more likely to have dense breast than fatty breasts. No agreed standard for BD assessment. The high level of agreement between the 6 radiologists may be due to the readers all working in the same practice; it is possible they would demonstrate considerable inter- reader variability with readers from different practice, limiting generalizability. Using the majority report in Phase 1
7.	Eng 2014 ⁹ and	Cases: women with	BI-RADS 4 th	readings of each radiologist. Inter- and intra-	2; UK	Good	Νο	Yes	Yes	might have been a better reference standard. It is possible that the increased sensitivity of Quantra for BIRADS 1 and 2 in Phase 2 may be due to the small sample size compared with Phase 1 and the laboratory effect.
7.	Eng 2014 ³ and Busana 2016 ^{53*}	newly diagnosed	edition; Cumulus	method and left-	2, UK	G000	INU	162	162	population was

		breast cancer (mean (SD) age: 67.5 (12.7) years; not eligible as diagnostic population); controls: women who attended routine screening and were found to be breast cancer free (mean (SD) age: 59.5 (6.6) years) (n=1969)	v3; ImageJ-based method; Volpara v1.0; Quantra v1.3; single energy x-ray absorptiometry (SXA) method, v6.5	right comparisons among controls. Within-observer reliability of Cumulus. Between-observer reliability of Cumulus. LIBRA						predominantly postmenopausal, thus, limiting the generalizability of the findings to premenopausal women. Response rates were low for healthy controls (51%). Processed images were missing for 15 % of the control participants due to a logistical error.
8.	Eom 2017 ⁴⁵	Healthy women (n=1000)	BIRADS 5 th edition, Volpara version 1.5.12	Intra- and inter- reader agreement for BIRADS; concordance between Volpara and BIRADS	1; Republic of Korea	Good	100% Asian	Unclear	Yes	First, all the mammographic examinations were performed in a single mammographic unit, with only one specific kind of automated quantitative measurement to be used for comparisons. However, employing a unified equipment and software might have increased the data reliability. Second, the number of the readers was

9.	Garrido-Estepa	Women aged ≥4	BI-RADS 4 th edition	Intra-observer	3; Spain	Fair	Unclear	No	Yes	small and they were all trained at the same institution. However, we tried to assess the differences between the readers with different experience levels, which would reflect the situation often found in clinical practice. Finally, the automated volumetric measurement was used as a reference standard. The revised fifth edition of BI-RADS no longer indicates the ranges of the percentage of dense tissue and emphasizes the changes in mammography sensitivity. There is no other standard reference for mammographic density assignment in clinical practice. 1 reader only.
	2010 ⁴⁶	years who attended screening		reliability						

		in Barcelona, Burgos, Corunna (Coruña), Palma de Mallorca, Pamplona, Valencia and Zaragoza (n=1532)								
10.	Gweon 2013 ⁴²	Full-field digital mammography (FFDM) examinations (n= 778)	BIRADS 4 th edition; Volpara version 1.5.1	Inter-rater reliability for BIRADS. Concordance between BIRADS and Volpara	1; South Korea	Fair	Unclear	Yes	Yes	A reference standard to evaluate breast density does not exist. Three radiologists in a single institution assigned BI-RADS density categories. It would be best to perform a larger study with more patients and radiologists from a variety of practice settings to validate the findings.
11.	Harvey 2013 ⁴⁹	Women aged ≥ 40 years who underwent ≥2 digital screening mammography examinations <36 months apart; mean (SD) age 57.7 +/- 11.4 (range 40- 89 or older) years (n=87066)	BIRADS 3rd edition (prior to 2003) or 4th edition (released in 2003)	BIRADS test-retest agreement	5; USA	Fair	Yes	Yes	Yes	Included density interpretations determined on both 3 rd and 4 th editions of BIRADS lexicon

12.	Holland 2016 ⁴⁰	Women aged 50-	Volpara v 1.5.0	Inter-exam	Not stated but	Good	Yes	Yes	No	The readers had a
		75 with	and BIRADS 4 th	agreement was	multiple; The					minimum interval of
		consecutive exam	edition	calculated with	Netherlands					only one week
		pairs; mean (SD)		Cohen's weighted						between readings
		age 58.8 ± 6.7		kappa. Intraclass						(although 30 months
		years (n=500)		correlation						between prior and
				coefficients (ICCs)						current
				were calculated to						mammograms). It
				examine the						may well be that
				interexam						variability of their
				agreement of the						criteria for the
				four classes						categorisation
				categorisation.						increases with the
										interval length,
										which would cause a
										decrease of
										agreement over
										time. In that regard,
										in screening practice
										the reader
										agreement might be
										lower than the
										authors found,
										because the
										screening interval is
										in reality much
										longer than the
										interval in this
										experiment.
13.	Irshad 2016 ¹²	Consecutive	BIRADS 4th edition	Each radiologist	1; USA	Good	Unclear	Yes	Yes	One limitation of the
		women with digital	and BIRADS 5th	evaluated the						study was its design
		mammograms	edition	breast density of						for readers to focus
		from screening		104						all their attention on
		mammography		mammographic						breast density,
		database; mean		examinations four						making density the

		age 47 (range 36- 82) years (n=104)		times: twice using the 4th-edition BI- RADS criteria and twice using the 5th-edition. Intra- reader and interreader agreements for 4th-edition and 5th-edition criteria.						most important finding on the mammograms, which is not the case in real practice in which density is usually a secondary focus of attention.
14.	Irshad 2017 ⁵¹	Digital screening mammograms read by the 5 readers at the authors' institution who had read mammograms under 4th (n= 19066) or 5th (n= 16907) edition BIRADS guidelines	BIRADS 4th edition and BIRADS 5th edition	Intraclass correlation coefficient (ICC) within each dataset.	1; USA	Fair	Yes	Yes	Yes	Single institution; practice patterns of the readers might have been more similar to one another than those seen across various institutions and practices
15.	Jeffers 2017 ¹⁴	Cases: women who underwent screening mammography and subsequently received a diagnosis of breast cancer; pre- diagnostic mammographic examination at least 1 year before the date of	Cumulus 6 (version 4.0); Volpara (version not stated) and BI- RADS (version not stated)	Correlation between methods	1; USA	Fair	Unclear	Yes	Unclear	The available sample size limited the ability to detect subtle differences in discrimination among the density assessment methods. Second, clinical BI-RADS density assessment was made by a single reader. The Cumulus

		diagnosis; image of								assessments were
		the noncancerous								performed by a
		breast								single reader. The
		contralateral to								standard of practice
		the affected breast								for using Cumulus
		(n=125; 58.4% >50								software is to
		years). Controls:								require the reader
		women without a								to undergo
		history of breast								specialised training
		cancer who								and attain high
		underwent								levels of intrareader
		screening								reproducibility with
		mammography;								test images before
		breast cancer-free								reading the study
		status confirmed								images. The
		with at least 10								extensive training
		years of follow-up								and time required to
		for women aged								perform Cumulus
		≥50 years or ≥3								measurements
		screening								made it impractical
		mammograms								to have more than
		negative for cancer								one Cumulus reader
		(BI-RADS								for this study,
		assessment								although we
		category 1 or 2) for								acknowledge that
		women < 50 years								having multiple
		(n=274; 58.8% >50								readers could have
		years).								strengthened the
										results.
16.	Kang 2016 ⁴³	Craniocaudal	Cumulus (version	Intra- and inter-	1; South Korea	Fair	No	Yes	Yes	The authors chose
		mammograms of	4.0)	reader reliability						readers who had
		subjects who were		with Cumulus						sufficient experience
		involved in a								in mammographic
		breast cancer								reading and breast
		screening program								density estimation,

		and found to have normal breasts; mean 50.2 years; range, 28–79 years (n=100)								the small number of readers limits the generalizability of the study findings. They used only craniocaudal mammograms. Studies have shown better associations between percentage density and breast cancer on craniocaudal images than on mediolateral oblique images. Density estimates were made on images acquired from a single model of equipment. Because each type of mammographic system has different imaging characteristics and post-processing options, our study results cannot be directly applied to mammograms
										results cannot be
										types of equipment.
17.	Kerlikowske	Digital screening	BIRADS 5 th edition,	Correlation	Not stated;	Fair	Yes	Yes	Yes	In studies for
	2017 ⁵²	examinations of	Volpara version	between BIRADS	USA					interrater and
		women with	1.5.0	categories and						intrarater reliability

		incident invasive		Volpara						of the BI-RADS
		breast cancers and		continuous dense						categories,
		matched control		breast volume,						investigators have
		subjects without		divided into						reported moderate
		prior breast		quartiles						to substantial
		cancer.		•						agreement. Thus,
		(n=5406)								misclassification of
		()								BI-RADS categories
										may have influenced
										our results, such
										that some of the
										differences we
										observed could
										result in an under-
										or overestimation of
										associations. Our
										population was
										predominantly white
										and Asian; studies
										should be repeated
										with black and
										Hispanic women to
										ensure
										generalizability of
										results across all
										racial/ethnic groups.
18.	Llobet 2014,15	Mammograms	BIRADS 3 rd edition,	Inter- and intra-	2; Spain	Fair	Yes	Yes	Yes	Brightness
_	Martinez Gomez	from women	DM-Scan, Cumulus	rater concordance	/ -	_				correction could
	2014 ⁵⁴ and Pollan	participants at two	,	with DM-Scan and						introduce a
	201355	screening centers		BIRADS.						significant error in
		equipped with full-		Agreement						MD measurement. A
		field digital		between visual						hard classification
		mammography		scale and Cumulus						scheme was used,
		machines; range		versus DM-Scan,						assuming that each
				with Cumulus/DM-						pixel can only belong

45-69 years	Scan having CCC	to one of the two
(n=655)	and Bland-Altman	possible classes. The
	plots.	relation between
		MD and breast
		cancer risk was not
		tested with a soft or
		probabilistic
		classification
		scheme, in which
		each pixel has an
		associated
		probability of
		belonging to each
		class. The authors
		did not estimate the
		extra time necessary
		to add the
		estimation of breast
		density to daily
		routine. DM-Scan
		and Cumulus were
		used on processed
		mammograms that
		depend on the
		manufacturers; the
		authors did not have
		access to raw
		(unprocessed)
		images because
		Spanish screening
		centres discard them
		due to storage
		constraints.
		Reliability of DM-
		Scan and Cumulus

19.	Lobbes 2012 ¹⁶	Women with digital mammograms; mean 51.6 (range 23.9-91.2) years (n=200)	BIRADS 4 th edition, QWIN semi- automated thresholding	Inter-reader reliability of BIRADS 4 th edition; QWIN ICC left versus right breast	1; The Netherlands	Fair	Unclear	Unclear	Yes	not compared in this study. The study included relatively small numbers of dense breasts (BIRADS 3 or 4). A true gold standard for the assessment of breast density is lacking.
20.	Mazor 2016 ³⁹	Patients who had undergone consecutive mammography between January and March 2014 were randomly chosen; age not stated (n=503)	BIRADS 5 th edition	Inter-observer agreement between technologists and radiologists. Intra- and inter-observer agreements within the group of radiologists and the inter-observer agreement within the group of technologists.	1; Israel	Good	Unclear	Yes	Yes	The reference range for breast density used in this study stemmed from the subjective measurements performed by the radiologists, as methods of objective breast density measurement such as automated breast density measuring algorithms are unavailable in the authors' institution.
21.	Osteras 2016 ⁴¹ and Osteras 2016 ⁵⁶	Women with digital mammograms; mean (SD) age 59.3 (5.6) years; range 50-70 years (n=537)	BIRADS 4 th edition, Quantra version 2.0 (areometric density, volumetric density, BIRADS- like categories)	Inter-observer variability for each radiologist versus the median BIRADS score (unweighted	1; Norway	Fair	Unclear	Yes	Yes	The radiologists had a range of experience from 1- 34 years, but more- and less- experienced readers equally influence the

				kappa and with quadratic weights)						median score. The radiologists did not use the BIRADS density scale in their daily practice but the three categories used in the Norwegian breast cancer screening program. They trained in the use of BIRADS before the study began; the training could reduce the variation in their assessments. This is a single- centre study, using the BIRADS 4 th edition, but in the
										future the 5 th edition will be used.
22.	Raza 2016 ⁵⁰	Digital bilateral screening mammograms; age not stated (n=200)	BIRADS 4 th edition; Volpara version not stated	Inter-rater reliability of radiologists using BIRADS before and after training, compared with a) senior breast imagers (leads truth [LT]) and b) Volpara (quantitative truth [QT]).	1; USA	Fair	No	Yes	Unclear	There is no gold standard for breast density assessment at this time. Today's software is not yet able to account for the complexity of breast tissue, as a trained radiologist can.

23.	Sartor 201647	Digital	BIRADS 4 th edition	Inter-observer	1; Sweden	Fair	Unclear	Yes	Unclear	Initial trial
25.	501101 2010	mammograms	and Volpara	variability for	i, Sweden	1 dii	officical	103	officical	participation rate
		with available raw	(version 1.5.11)	examinations with						was 71.1%; further
		data from the	(VCISION 1.3.11)	two BIRADS						women did not have
		Malmo Breast		scores. Kappa						both BIRADS and
		Tomosynthesis		values for						Volpara readings, so
		Screening Trial		comparison						overall around 67%
		(MBTST), a		between Volpara						participation.
		prospective study		density grades						participation
		comparing MLO		(VDG; categorical						
		DBT alone vs. CC		variable with four						
		and MLO DM;		groups) and						
		mean age 58		BIRADS scores						
		(range 40-76) years		calculated using						
		(n=8426).		separate kappa						
		, ,		coefficients for						
				each reader vs.						
				Volpara, then						
				results combined						
				in a meta-analysis,						
				weighting them						
				using the standard						
				error for each						
				kappa, rendering a						
				pooled kappa.						
24.	Seo 201344	Healthy women	BIRADS 4 th edition	Intra- and inter-	1; Republic of	Fair	No	Yes	Yes	There is a lack of
		received four-view	and Volpara	observer	Korea					reference-standard
		screening	(version 1.4)	agreement for the						regarding breast
		mammograms		BI-RADS density						density. Only a small
		whose		category;						number of
		mammograms		concordance						radiologists read the
		were considered to								BI-RADS breast
		be negative (BI-								categories. <30% of
		RADS category 1);								eligible women
		mean 49.1 (range								consented.

		35–72) years (n=193)								
25.	Singh 2016 ³⁸	Asymptomatic females >35 years of age; mean (SD) 48.8 (7.07), range 36-76 years (n= 476)	BIRADS 5 th edition and Volpara (version 1.4.5)	Interobserver agreement using BIRADS; correlation between BIRADS and volumetric breast density	1; India	Fair	Yes	Yes	Yes	This was a small study in a single institution and examinations were interpreted by only 2 radiologists. There is no reference standard for breast density. Factors such as BMI were not investigated. Only one mammography machine was used so results cannot be generalised to all types of machines.
26.	Sprague 2016 ²²	Screening mammography; mean (SD) 57.9 (10.8), range 40 to 89 years (n= 145,123)	BI-RADS 4 th edition	Inter-rater variation between radiologists; test- retest reliability when interpreted by the same or a different radiologist	30; USA	Fair	Yes	Yes	Yes	The study was limited to assessments by radiologists practicing in the clinical networks of the 3 PROSPR breast cancer screening research centers. Although these included a large number of academic and community practice breast imaging facilities in 4 states, the degree of variation in breast

					density assessment
					may differ in other
					clinical settings
					around the country.
					Variation in density
					assessment may
					differ at radiology
					practices serving a
					different
					demographic mix of
					patients.
					Quantitative density
					measures were not
					available for
					comparison with the
					radiologist's
					subjective
					assessment. Results
					likely reflect not only variation in
					radiologist
					interpretation of
					images but also the variation in the
					mammography machines and
					software used to
					produce digital
					mammographic
					images that is
					routinely present
					across and within
					facilities over time in
					clinical practice.

										Over 15% of women were excluded.
27.	van der Waal 2015 ¹³	Screening mammograms; median age 59 (IQR: 54–64) years (n=992)	BI-RADS 5th edition; Quantra (version 1.3); Volpara (version 1.5.11)	Intra- and inter- rater reliability of the BI-RADS density scores; overall proportions of agreement (absolute agreement); intraclass correlation coefficients (ICC) between volumetric breast density estimates and BI-RADS classification	1; The Netherlands	Good	Yes	Yes	Unclear	The authors did not have any information on breast cancer risk, which would ultimately be needed to validate both breast density measures and potentially implement them in a breast cancer screening setting if they are to be used for risk stratification. More research is needed as well on the association between volumetric density and sensitivity of digital mammography. This information is required to identify a clinically relevant breast density cut- off value above which additional screening (e.g., with MRI or ultrasound) may be cost effective. Studies are also needed on the

	of volumetric
	density in risk models.

Table b: Results: Test-retest reliability

Study	Intervention	Readers	Time between assessments	Outcome reported
Ekpo 2016. ¹⁹	BI-RADS 4 th edition	All Royal Australian and New Zealand College of Radiology-certified breast radiologists. Number of years certified: R1: 13; R2: 20; R3: 3; R4: 20; R5: 19; R6: 35 (mean 18.3). Number of years reading screening mammograms: 13; 20; 3; 20; 19; 25, respectively (mean 16.7).	5 months	Weighted kappa (weighting not stated): four- category scale: Reader 1: 0.87 (0.83–0.92) Reader 2: 0.86 (0.83–0.91) Reader 3: 0.88 (0.85–0.93) Agreement between the BIRADS assessment in Phase 1 and the majority report in Phase 2 was 0.78 (0.73 to 0.85). Weighted kappa: two-category scale: Reader 1: 0.91 (0.88–0.95) Reader 2: 0.88 (0.83–0.92) Reader 3: 0.90 (0.87–0.94)
Eom 2017 ⁴⁵	BIRADS 5 th edition	Two were breast-imaging experts with more than five years of experience in reading mammograms, two were general radiologists with fewer years of experience in reading mammograms, and two were medical students without clinical experience in breast imaging. Two medical students were trained to read total of 80 mammogram set comprised of 20 mammograms per each Volpara density categories.	2 months	Weighted kappa (weighting not stated): Intra- reader agreement for the BI-RADS density categories a, b, c, and d was almost perfect or substantial (k=0.74–0.95) for breast-imaging experts (0.84, 0.87), general radiologists (0.86, 0.95), and students (0.74, 0.86). Intra-reader agreements on the non-dense and dense group classification were almost perfect or substantial (k=0.76–0.95) among the breast-imaging experts (0.85, 0.88), general radiologists (0.88, 0.95), and students (0.76, 0.90).

Garrido- Estepa 2010 ⁴⁶	BI-RADS 4 th edition	A single experienced radiologist	1–66 days	BI-RADS 4-category classification: Kappa 0.76 (95% CI: 0.676-0.842); quadratic weighted kappa 0.90 (95% CI: 0.860-0.938).
Harvey 2013 ⁴⁹	BIRADS 3 rd edition (prior to 2003) or 4 th edition (released in 2003); not shown	Radiologist	Mean 429 days (around 14.3 months) +/- 127 days	2-category: 0.815 (0.746, 0.885) Linear weighted κ value (95% Cl): 0.544 (0.540, 0.549)*; quadratic weighted kappa: 0.638 (0.634, 0.642)* *=calculated by CS
Holland 2016 ⁴⁰	separately BIRADS 4 th edition	Three radiologists with more than eight years of experience in breast	30 months	The agreement was substantial for the readers
201640	and Volpara v 1.5.0	imaging; PhD student with a medical degree and two years of experience with breast imaging. The radiologists were familiar with the density categories, as these are routinely assessed in clinical practice.		for BIRADS with weighted kappa values ranging from 0.76 to 0.82 using four classes (weighting not stated). Radiologists: 0.76, 0.77, 0.79; student: 0.82.
				The agreement was substantial for the readers for BIRADS with values ranging from 0.68–0.77 using two classes.
				Using Volpara VDG the authors obtained a weighted kappa of 0.85 (0.82–0.87).
				Using VDG the authors obtained a kappa of 0.80 (Cl 0.74–0.85) for two classes.
				The ICC (95% CI) of the scores for the prior and current exams was 0.91 (0.89–0.92), 0.79 (0.75– 0.82), 0.77 (0.73–0.81), 0.76 (0.72–0.79), 0.82 (0.79–0.84), and 0.75 (0.71–0.78) for VDG, R1, R2, R3, R4 and RG ('group reading', by assigning the score of a randomly chosen reader) respectively.
Irshad 2016 ¹²	BIRADS 4 th edition	Five fellowship-trained radiologists (breast imagers with 3–17 years of experience)	4 weeks	4 th -edition BI-RADS: overall intrareader agreement (quadratic weighted kappa) 0.84

				(95% CI, 0.80–0.87); individual intrareader agreements in five readers ranged from 0.78 (95% CI, 0.69–0.88) to 0.92 (95% CI, 0.87–0.97); four readers >0.8 and one <0.8.
	BIRADS 5th edition		4 weeks	5 th edition BIRADS: overall intrareader agreement 0.77 (95% CI, 0.73–0.81); individual intrareader agreements in five readers ranged from 0.74 (95% CI, 0.64–0.84) to 0.99 (95% CI, 0.98–1.00); four readers >0.8 and one <0.8.
Llobet 2014, ¹⁵ Martinez Gomez 2014 ⁵⁴ and Pollan 2013 ⁵⁵	DM-Scan	3 highly experienced radiologists in screening mammographies. Raters R1 and R2 had been reading screening mammograms from more than 10 years, with 2 years' experience of full digital mammography in the former case and 6 years of indirect digital mammography in the latter. R3 had been reading mammograms for 34 years, including 2 years of indirect digital mammographs and 6 years of full digital mammograms.	2 months	Test-retest ICC (95 % CI) for semi-automated (DM-Scan) estimation: Reader 1: 0.935 [0.911 0.952]; reader 2: 0.938 [0.915 0.955]; reader 3: 0.900 [0.863 0.926]; mean of the three readers: 0.924 [0.896 0.944]
Sprague 2016 ²²	BI-RADS 4 th edition	83 radiologists	Median, 1.1 years, IQR 1.0 to 1.2 years	Among women with consecutive mammograms interpreted by the same radiologist (n = 11 042 women), 10.0% had discordant ratings for dense versus nondense status at the 2 examinations; linear weighted kappa 0.760 (0.7507, 0.7695)*, quadratic weighted kappa 0.8338 (0.8172, 0.8504)* * Calculated by CS
van der Waal 2015 ¹³	BI-RADS 5 th edition	Three experienced screening radiologists.	Not stated	The κ_w were 0.82 (95% CI: 0.79–0.86), 0.85 (0.80-0.89) and 0.87 (95% CI: 0.83–0.91) for the three readers on a four-category scale.

Table c: Results: Inter-rater reliability

Study	Intervention	Readers	Outcome reported
Abdolell 2013 ³⁷	Visual percent density assessment	Two senior mammographers, one junior mammographer, one senior resident, and one fellow.	ICC = 0.884 (95% CI 0.854, 0.910)

Alshafeiy 2017 ⁴⁸	BIRADS 5 th edition	Three radiologists; 5–25 years of experience in breast imaging.	For digital 2D mammography, on a four-category scale, weighted kappa (weighting not stated): Reader 1 and 2: 0.56 (0.48–0.63) Reader 1 and 3: 0.59 (0.52–0.66) Reader 2 and 3: 0.68 (0.61–0.74) For digital 2D mammography, on a two-category scale: Reader 1 and 2: 0.67 (0.59–0.75) Reader 1 and 3: 0.67 (0.59–0.75) Reader 2 and 3: 0.82 (0.75–0.89) Interreader agreement for the two-category scale was significantly different between readers 1 and 2 and readers 1 and 3 (p < 0.001 for both) but not between readers 2 and 3 (p = 1.000).
Ekpo 2016. ³⁶	BI-RADS 5 th edition	Three Royal Australian and New Zealand College of Radiology (RANZCR) certified breast radiologists	both but not between readers 2 and 3 (β = 1.000).Cohen's unweighted Kappa (κ) (95% CI) on a four-grade scale:Reader 1 vs. Majority report: 0.79 (0.74–0.85)Reader 2 vs. Majority report: 0.72 (0.66–0.78)Reader 3 vs. Majority report: 0.65 (0.58–0.73)Reader 1 vs. 2: 0.68 (0.61–0.75)Reader 1 vs. 3: 0.58 (0.50–0.65)Reader 2 vs. 3: 0.38 (0.30–0.46)The average of the reader 1 vs. 2, 1 vs. 3 and 2 vs. 3 kappas: 0.55 (0.47–0.62)Cohen's unweighted Kappa (κ) (95% CI) on a two-grade scale:Reader 1 vs. Majority report: 0.94 (0.92–0.97)Reader 2 vs. Majority report: 0.83 (0.75–0.89)Reader 1 vs. 2: 0.81 (0.72–0.89)Reader 1 vs. 3: 0.85 (0.78–0.92)Reader 2 vs. 3: 0.70 (0.61–0.78)The average of the reader 1 vs. 2, 1 vs. 3 and 2 vs. 3 kappas: 0.79 (0.70–
Ekpo 2016. ¹⁹	BI-RADS 4 th edition	Five Royal Australian and New Zealand College of Radiology-certified breast radiologists. Number of years certified: R1: 13; R2: 20; R3: 3; R4:	0.86) A substantial (0.61 to 0.80) to almost perfect (0.81 to 1.00) agreement was observed between the individual radiologist and the majority report

		20; R5: 19; R6: 35 (mean 18.3). Number of years reading scorning mammograms: 13; 20; 3; 20; 19; 25, respectively (mean 16.7).	 on a four-grade scale for BI-RADS from 0.80 (95% CI 0.76 to 0.83) to 0.89 (0.84 to 0.93). There was substantial inter-reader agreement (in pairs) on a four-grade scale from weighted kappa (weighting not stated) of 0.66 (0.62 to 0.71), 0.73 (0.68 to 0.77) and 0.75 (0.70 to 0.81). An almost perfect agreement was observed between the individual radiologist and the majority report on a two-grade scale from 0.82 (0.77 to 0.87) to 0.90 (0.85 to 0.94). There was substantial 0.77 (0.73 to 0.82) to almost perfect 0.89 (0.84 to 0.93) inter-reader agreement on a two-grade scale.
Eng 2014 ⁹ and Busana 2016 ⁵³	Cumulus	Not stated (random sample of 200 women whose images were independently read by a second observer)	The ICC for Cumulus percent density was 0.89, 0.90 and 0.83 for raw, processed and analogue-like images, respectively.
Eom 2017 ⁴⁵	BIRADS 5 th edition	Two were breast-imaging experts with more than five years of experience in reading mammograms, two were general radiologists with fewer years of experience in reading mammograms, and two were medical students without clinical experience in breast imaging. Two medical students were trained to read total of 80 mammogram set comprised of 20 mammograms per each Volpara density categories.	The four-category agreement between the expert and general radiologist was moderate (k=0.67). The two-category agreement between visual assessment of the expert and general radiologist was substantial (k=0.78). BI-RADS density 4-category weighted kappa (weighting not stated) Breast-imaging expert vs. general radiologist 0.67 (0.63 to 0.70) General radiologist vs. student 0.02 (-0.02 to +0.06) Breast-imaging expert vs. student 0.00 (-0.04 to +0.04) Non-dense vs. dense Breast-imaging expert vs. general radiologist 0.78 (0.73 to 0.82) General radiologist vs. student 0.03 (-0.02 to +0.09) Breast-imaging expert vs. student 0.00 (-0.04 to +0.05)
Gweon 2013 ⁴²	BI-RADS 4 th edition	Three blinded radiologists who specialize in breast imaging and at the time of the study had 5–10 years of experience in interpreting mammography and 5–8 years of experience in softcopy review of digital mammography	The overall weighted kappa (weighting not stated) of the three radiologists' estimates of BI-RADS density categories showed moderate agreement (κ = 0.48).

			Pairwise estimates of the weighted kappa between two different observers showed moderate to substantial agreement ($\kappa = 0.51-0.64$).
Holland 2016 ⁴⁰	BIRADS 4 th edition	Three radiologists with more than eight years of experience in breast imaging; PhD student with a medical degree and two years of experience with breast imaging. The radiologists were familiar with the density categories, as these are routinely assessed in clinical practice.	There was a substantial to almost perfect agreement, with weighted kappa values (weighting not stated) between 0.78 and 0.83 using four categories. The agreement for two categories is between 0.73 and 0.78.
Irshad 2016 ¹²	BIRADS 4 th edition BIRADS 5 th edition	Five fellowship-trained radiologists (breast imagers with 3–17 years of experience)	The overall interreader agreement (quadratic weighted kappa) using the fourth-edition BI-RADS criteria was 0.65 (95% CI, 0.61–0.69), whereas the overall interreader agreement using the fifth-edition BI-RADS criteria was 0.57 (95% CI, 0.53–0.61). The difference between the interreader agreements obtained using the old and new BI-RADS criteria was statistically significant (p = 0.006). Fleiss-Cohen (Quadratic) Weighted κ (95% CI) for reader pairs ranged from 0.67 (0.56–0.78) to 0.87 (0.80–0.93) for 4 th edition and from 0.61
Irshad 2017 ⁵¹	BIRADS 4 th edition	Five radiologists; all fellowship trained in breast imaging with clinical experience ranging from 3 to 15 years in reading mammograms	(0.48–0.74) to 0.90 (0.84–0.95) for 5 th edition. There was a statistically excellent agreement in the density distribution pattern between the readers for the BIRADS 4 th edition (ICC 0.940, 95% CI 0.754 to 0.996).
Kang 2016 ⁴³	Cumulus (version 4.0)	Two radiologists board certified in breast imaging and one breast surgeon (> 10 years of experience in mammographic reading)	All three readers' percentage density estimates agreed with one another for the interactive thresholding method (CCC 0.86-0.89).
Llobet 2014, ¹⁵ Martinez Gomez 2014 ⁵⁴ and Pollan 2013 ⁵⁵	BIRADS 4 th edition DM-Scan	Three highly experienced radiologists in screening mammographies. Raters R1 and R2 had been reading screening mammograms from more than 10 years, with 2 years' experience of full digital mammography in the former case and 6 years of indirect digital mammography in the latter. R3 had been reading mammograms for 34 years, including 2 years of indirect digital mammographs and 6 years of full digital mammograms.	The average quadratic weighted kappa was 0.823 (95% CI: 0.818–0.829) in the BI-RADS scale. Inter-rater ICC with their 95 % confidence intervals for semi-automated (DM-Scan) estimation: Reader 1 vs. Reader 2: 0.922 [0.910, 0.933] Reader 1 vs. Reader 3: 0.928 [0.916, 0.938] Reader 2 vs. Reader 3: 0.916 [0.902, 0.927] Mean: 0.922 [0.909, 0.933]
Lobbes 2012 ¹⁶	BIRADS 4 th edition	Mammoradiologist: 18 years' experience; senior resident in radiology: 2 years' experience	Inter-rater reliability of experienced versus inexperienced reader: overall linear weighted kappa: 0.521 (95% CI 0.446-0.597); moderate. Quadratic weighted kappa 0.65 (0.53, 0.77)*. * Calculated by CS

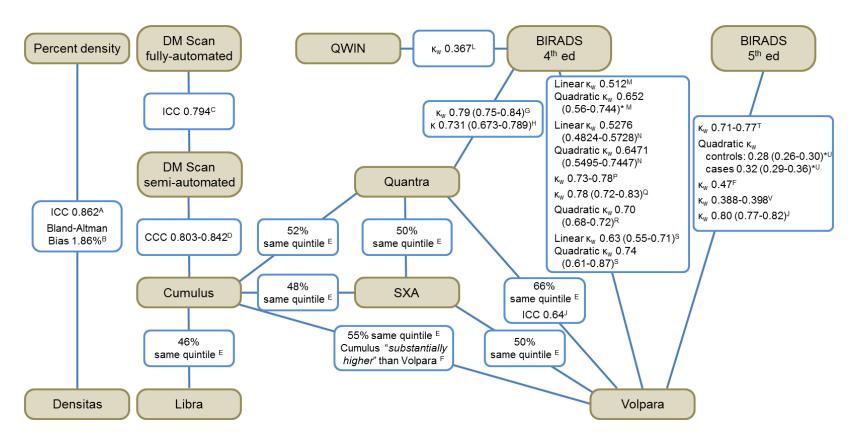
			Left versus right breast: CC projection: ICC 0.92, 95% CI 0.89 to 0.94; MLO projection: 0.91, 95% CI 0.89 to 0.93.
Mazor 2016 ³⁹	BIRADS 5 th edition	Ten mammography technologists and seven breast radiologists. Technologists: variable levels of experience; seniority, ranging from 12 to 60 months (mean: 29.4 months, SD: 13.2months). Each technologist underwent dedicated training for breast density evaluation according to the 5th edition of the BI-RADS breast density system before participating in the study. Radiologists: at least ten years of experience	Overall, only a fair level of agreement was noted between the technologists and the radiologists in determining BDS, with a weighted kappa (weighting not stated) of 0.38 (95% CI: 0.33, 0.43) using four categories. For four categories: Technologists only: 0.62 (95% CI: 0.53, 0.71) Radiologists only: 0.69 (95% CI: 0.59, 0.78)
			For two categories: kappa value of 0.45 (95% CI: 0.38, 0.51) between the technologists and the radiologists, indicating a moderate level of agreement. Fewer women were evaluated with breast density scores of 1–2 by the technologists (49%) as compared to the radiologists (73%). Conversely, the technologists evaluated more women with the higher breast density scores of 3–4 (51%) as compared with the radiologists (27%). For two categories: Technologists only: 0.62 (95% CI: 0.49, 0.74) Radiologists only: 0.77 (95% CI: 0.66, 0.87)
Osteras 2016 ⁴¹ and Osteras 2016 ⁵⁶	BIRADS 4 th edition	Five radiologists: 11, 34, 24, 1 and 3 years' experience (radiologists 1-5 respectively)	BIRADS: Four of the five radiologists had almost perfect agreement with the median score using quadratic weights: Radiologist 1: 0.879 (0.855-0.901) Radiologist 2: 0.875 (0.848-0.900) Radiologist 3: 0.849 (0.823-0.873) Radiologist 4: 0.934 (0.915-0.951) Radiologist 5: 0.763 (0.724-0.798)BIRADS: Using unweighted kappa with four categories, four of five radiologist schemed substantial agreement as batter, while one should
			radiologists showed substantial agreement or better, while one showed moderate agreement. Radiologist 1: 0.724 (0.675-0.771) Radiologist 2: 0.748 (0.701-0.794) Radiologist 3: 0.672 (0.619-0.722)

			Radiologist 4: 0.856 (0.817-0.891) Radiologist 5: 0.525 (0.465-0.582)
Sartor 201647	BIRADS 4 th edition	Five breast radiologists; all had >10 years' experience in breast radiology.	There was substantial agreement between BIRADS scores with a linear weighted kappa of 0.77 (0.76 to 0.79); percent of observations on which raters agreed 80.9%.
Singh 2016 ³⁸	BIRADS 5 th edition	Two blinded radiologists who specialize in breast imaging; 5-10 years of experience in interpreting mammography	BIRADS: almost perfect agreement (κ = 0.895). 444/476 examinations (93.3%) showed agreement between the two observers; the other 32 showed differences within 1 category only.
Sprague 2016 ²²	BI-RADS 4 th edition	Eighty-three radiologists	Among women with consecutive mamograms interpreted by different radiologists (n = 34 271 women), 32.6% had a different density assessment at the 2 examinations. With density dichotomised as dense or nondense, 17.2% of women with consecutive mammograms interpreted by different radiologists had discordant density ratings at the 2 examinations; 27.0% of women with dense breasts at the first examination were deemed to have nondense breasts at the second examination, and 11.4% of women with nondense breasts at the first examination were deemed to have dense breasts at the second examination. The median percentage of mammograms rated as showing dense breasts (heterogeneously or extremely dense) was 38.7%, with an interquartile
			range of 28.9% to 50.9% and a full range of 6.3% to 84.5%. Twenty-five percent of radiologists rated fewer than 28.9% of their patients' mammograms as showing dense breasts, whereas the highest 25% of radiologists rated at least 50.9% of their patients' mammograms as showing dense breasts.
van der Waal 2015 ¹³	BI-RADS 5 th edition	Three experienced screening radiologists.	The mean proportion of agreement for the pair-wise comparisons was 71.3% (range %: 67.6–74.3, range n: 671–737). The quadratic κ_w of the inter-rater comparisons ranged from 0.80 to 0.84, which corresponds to 'good' or 'very good' reliability.
			The mean proportion of agreement for the pair-wise comparisons when the measure was dichotomised was higher (range %: 89.0–90.2).

Table d: Results: Concordance

Study	Intervention/comparator	Readers	Outcome reported
Abdolell 2013 ³⁷	Densitas vs. median of the visual % density assessments performed by the five participating radiologists	Two senior mammographers, one junior mammographer, one senior resident, and one fellow.	ICC = 0.862 Bland-Altman: bias = 1.86% (95% CI not explicitly reported. Says "both were less than 25%"), lower limit of agreement = -20.38, upper limit of agreement = 24.1, largest outlier = not reported
Conant 2017 ¹⁷	LIBRA vs. BIRADS 5 th edition	Radiologist	There was a correlation between the increasing BIRADS categories and increasing mean percent density estimates using LIBRA; shown graphically.
Destounis 2017 ¹⁸	BIRADS 4 th edition, from previous normal mammogram vs. Volpara v1.4.2 from previous normal mammogram if raw images available or contralateral breast if raw images not available	Radiologists; breast imaging experience ranged from 6 to 35 years	Linear weighted κ = 0.512 Kappa recalculated for the review (CS) using quadratic weights (κ = 0.652, 95% CI 0.56, 0.744) rather than linear weights (κ = 0.512 95% CI 0.466, 0.557)
Ekpo 2016. ¹⁹	Quantra vs. BI-RADS 4th edition majority report	All Royal Australian and New Zealand College of Radiology- certified breast radiologists. Number of years certified: R1: 13; R2: 20; R3: 3; R4: 20; R5: 19; R6: 35 (mean 18.3). Number of years reading scorning mammograms: 13; 20; 3; 20; 19; 25, respectively (mean 16.7).	Simple kappa four-grade scale: 0.55 (0.48–0.63) Weighted kappa four-grade scale 0.79 (0.75–0.84) Simple kappa two-grade scale: 0.57 (0.50–0.64) Weighted kappa two-grade scale): 0.84 (0.79–0.87)
Eng 2014 ⁹ and Busana 2016 ⁵³	BI-RADS 4 th edition; Cumulus v3; ImageJ- based method; Volpara v1.0; Quantra v1.3; single energy x-ray absorptiometry (SXA) method, v6.5	Not stated	Bland-Altman plots showed no systematic differences in square root transformed Cumulus and LIBRA percent density values from the same type of image. In all, 45–47 % of women were assigned to the same quintile and 81– 87 % to the same ±1 quintile by LIBRA and Cumulus percent density estimates on the same type of image. Cumulus vs. Quantra: 52% of women assigned to the same quintile Cumulus vs. SXA: 48% assigned to the same quintile Cumulus vs. Volpara: 55% assigned to the same quintile Quantra vs. SXA: 50% assigned to the same quintile Quantra vs. Volpara: 66% assigned to the same quintile

Eom 2017 ⁴⁵	BIRADS 5 th edition vs. Volpara version 1.5.12	Two were breast-imaging experts with more than five years of experience in reading mammograms, two were general radiologists with fewer years of experience in reading mammograms, and two were medical students without clinical experience in breast imaging. Two medical students were trained to read total of 80 mammogram set comprised of 20 mammograms per each Volpara density categories.	The four-category agreement between visual assessments of the breast-imaging expert and volumetric assessments by Volpara was substantial (k=0.77). The agreement between visual assessments by the student and volumetric assessments by Volpara was slight (k=0.01). The two-category agreement between visual assessments of the breast-imaging expert and volumetric assessments by Volpara was almost perfect (k=0.83). The agreement was substantial between visual assessments of general radiologist and volumetric assessment by Volpara (k=0.73), but the agreement between visual assessments of the students and volumetric assessments by Volpara (k=0.73), but the agreement between visual assessments of the students and volumetric assessments by Volpara was slight (k=0.01). BIRADS 4-category: Reader vs. Volpara Breast-imaging expert 0.77 (0.75 to 0.80) General radiologist 0.71 (0.68 to 0.74) Student 0.83 (0.80 to 0.87) General radiologist 0.73 (0.68 to 0.77) Student
Gweon 2013 ⁴²	BIRADS 4 th edition; Volpara version 1.5.1	Three blinded radiologists who specialize in breast imaging and at the time of the study had 5–10 years of experience in interpreting mammography and 5–8 years of experience in softcopy review of digital mammography	0.01 (-0.05 to +0.07) Pairwise estimates of the weighted kappa between BI- RADS density category by two radiologists' agreement and Volpara VDG showed moderate agreement (κ = 0.54 reported in paper; linear weighted kappa: 0.5276 (0.4824, 0.5728)*; quadratic weighted kappa: 0.6471 (0.5495, 0.7447)*). *=calculated by CS


Holland 2016 ⁴⁰	BIRADS 4 th edition and Volpara v 1.5.0	Three radiologists with more than eight years of experience in breast imaging; PhD student with a medical degree and two years of experience with breast imaging. The radiologists were familiar with the density categories, as these are routinely assessed in clinical practice.	The agreement between the readers and VDG is lower than the inter-reader agreement; with kappa values between 0.73 and 0.78 using four categories. In most of the pairs with a disagreement between VDG and the reader, a higher score was given by the software than by the reader.
			The agreement between the readers and VDG is lower than the inter-reader agreement; with kappa values between 0.63 and 0.71 using two categories.
Jeffers 2017 ¹⁴	Cumulus 6 (version 4.0); Volpara (version not stated) and BI-RADS (version not stated)	A single reader (with 2 years of experience), who was blinded to whether the images were for patients or control subjects, performed all Cumulus measurements. The reader was trained by the providers of the Cumulus software. Readers for Volpara and BI-RADS not stated.	The agreement of clinical BIRADS and Volpara density categorisations was fair, with a weighted kappa statistic of 0.47. Cumulus area-based percentage of density measurements
			were substantially higher than were Volpara volumetric percentage of density measurements.
Kerlikowske 2017 ⁵²	BIRADS 5 th edition; Volpara version 1.5.0	Practising radiologists	A wide distribution of dense breast volume was observed within each BI-RADS density category. Surprisingly, about one-third (30.5%) of control subjects with almost entirely fat breasts had first-quartile dense breast volume (<35.9 ml), and about half (54.1%) with extremely dense breasts had fourth-quartile (>70.0 ml) dense breast volume. The correlation coefficient between continuous dense breast volume and BI-RADS density was r = 0.38 (95% CI 0.34– 0.42) for cases and r = 0.31 (95% CI 0.29–0.34) for control subjects. Weighted (quadratic) kappa = 0.28 (0.26, 0.30)* for control subjects; weighted (quadratic) kappa = 0.32 (0.29, 0.36)* for case subjects. *=calculated by CS
Llobet 2014, ¹⁵ Martinez Gomez 2014 ⁵⁴ and Pollan 2013 ⁵⁵	DM-Scan semi-automated vs. DM-Scan fully automated	3 highly experienced radiologists in screening mammographies. Raters R1 and R2 had been reading screening mammograms from more than 10 years, with 2 years' experience of full digital mammography in the former	ICC (95% CI) comparing the fully-automated and the semi- automated (DM-Scan) methods for each rater: Reader 1: 0.800 [0.771, 0.826] Reader 2: 0.838 [0.814, 0.860]
		case and 6 years of indirect digital mammography in the	Reader 3: 0.785 [0.754, 0.813]

	Cumulus vs. DM-Scan	latter. R3 had been reading mammograms for 34 years, including 2 years of indirect digital mammographs and 6 years of full digital mammograms.	Mean: 0.794 [0.764, 0.821] Concordance Correlation Coefficient (CCC) (95% CI): Reader 1: 0.841 (0.820 to 0.863) Reader 2: 0.803 (0.777 to 0.828) Reader 3: 0.842 (0.820 to 0.864)
Lobbes 2012 ¹⁶	BIRADS 4 th edition vs. QWIN	Mammoradiologist: 18 years' experience; senior resident in radiology: 2 years' experience	Experienced reader: $\kappa = 0.367$
Osteras 2016 ⁴¹ and Osteras 2016 ⁵⁶	Quantra vs. BIRADS 4 th edition	5 radiologists: 11, 34, 24, 1 and 3 years' experience (radiologists 1-5 respectively)	Quantra (at 10% threshold) versus radiologists median BIRADS 4 th edition: Binary classification (unweighted) kappa = 0.731 (0.673-0.789) 12 (2.2%) were unanimously scored fatty by radiologists and dense by Quantra (false positives); 2 (0.4%) were unanimously scored dense by radiologists and fatty by Quantra (false negatives).
Raza 2016 ⁵⁰	Agreement between the "Leads truth" (LT) from breast imagers using BIRADS 4 th editions vs. Volpara ("quantitative truth" [QT])	Two senior breast imagers, each with more than 20 years of breast imaging experience	The quantitative density tool tended to assign higher density categories to the 200 cases than the study leads assigned. The calculated weighted k statistic was 0.78 (95% CI, 0.72 to 0.83) indicating substantial agreement.
Sartor 2016 ⁴⁷	BIRADS 4 th edition; Volpara (version 1.5.11)	5 breast radiologists; all had >10 years' experience in breast radiology	Agreement between Volpara density grade (VDG) and BIRADS per radiologist: linear weighted kappa: Radiologist 1: 0.66 (0.56, 0.75) Radiologist 2: 0.56 (0.54, 0.58) Radiologist 3: 0.48 (0.44, 0.52) Radiologist 4: 0.52 (0.48, 0.56) Radiologist 5: 0.57 (0.53, 0.61) Overall: 0.55 (0.53, 0.56) Overall quadratic weighted kappa: 0.7004 (0.6842, 0.7166)* * Calculated by CS
Seo 2013 ⁴⁴	BIRADS 4 th edition and Volpara (version 1.4)	Two board certified radiologists who each had several years of experience in reading mammograms (17 years and 7 years) and a 3rd-year radiology resident	There were 134 cases of agreement and 59 cases of disagreement (30.6%; 54 were over-scored using VDG and 5 under-scored).

			Linear weighted kappa = 0.63 (0.55, 0.71)* Quadratic weighted kappa = 0.74 (0.61, 0.87)* * Calculated by CS
Singh 2016 ³⁸	BIRADS 5 th edition and Volpara (version 1.4.5)	2 blinded radiologists who specialize in breast imaging; 5-10 years of experience in interpreting mammography	Pairwise estimates of weighted kappa between VDG grade and BIRADS density by 2 observers showed fair agreement (κ = 0.398 and 0.388, respectively). On visual assessment, <25% of the study population was categorised as BIRADS 3 or 4, whereas Volpara assigned around 41% to the dense category.
van der Waal 2015 ¹³	Volpara (version 1.5.11) vs. BI-RADS 5 th edition	Three experienced screening radiologists.	The Volpara VDG distribution was comparable to the BI- RADS density distribution (κ_w : 0.80, 95% CI: 0.77–0.82; proportion agreement: 65.4%).
	Volpara (version 1.5.11) vs. Quantra (version 1.3)		The median volumetric percent density was 12.1% (IQR: 9.6–16.5) for Quantra, which was higher than the Volpara estimate (median 6.6%, IQR: 4.4–10.9). The mean difference between Quantra and Volpara was 5.19% (95% CI: 5.04–5.34) (ICC: 0.64).

Figure e: Diagram of concordance (excluding untrained students)

While a Kappa of 1 represents a perfect agreement, Kappa values of 0 or below represent agreements that occur by chance, or that are poor. Kappa values of 0.01–0.20 represent slight agreement, values of 0.21–0.40 represent fair agreement, those between 0.41–0.60 represent moderate agreement, values between 0.61–0.80 represent substantial agreement and values between 0.81–0.99 represent almost perfect agreement. ICC is equivalent to weighted kappa. Concordance between methods was fair to substantial.

* Kappa calculated

CCC = Concordance Correlation Coefficient ICC = Intraclass correlation coefficient; κ = Unweighted Kappa; κ_w = Weighted Kappa

A: Abdolell 2013 B: [<i>limits of agreement -20.38 to +24.1, largest outlier not reported</i>] C: Llobet 2014 D: Pollan 2013 E: Eng 2014 & Busana 2016 F: Jeffers 2017	G: Ekpo 2016 [<i>Quantra</i>] H: Osteras 2016 [<i>Classification</i>] J: van der Waal 2015 L: Lobbes 2012. [<i>Experienced reader</i>] M: Destounis 2017 N: Gweon 2013 P: Holland 2016	Q: Raza 2016 R: Sartor 2016 S: Seo 2013 T: Eom 2017 U: Kerlikowske 2017 V: Singh 2016
---	--	--

Question 2a

Table a: Design and limitations

Study	Population (n)	Interventions/ Comparator	Outcome	No. centres; country	Limitations
Destounis 2017 ¹⁸	Women aged >40 years (mean 62.1; SD 11) with histopathologically confirmed breast cancer (n=614)	Mammographic density using BIRADS 4 th edition or Volpara	Comparison between screen-detected and interval cancers	1; USA	Retrospective study; BMI not available and so not included in multivariate analysis. Interval cancers not differentiated between true interval, missed or mammographically occult (i.e. masked by dense tissue). Unable to analyse the relation between masking risk and location and distribution of density within the breast. Large proportion of people missing from analysis. Around 13.6% aged <50 years and 23.6% >70 years. Around 8.5% <47 years and 16.1% >73 years.
Holland 2017 ⁶¹	Cases: Women with interval cancers within 12 months after the examination. The last available screening examination before cancer diagnosis is used in this study. Mean age 57.7 years. Controls: For each patient with an interval cancer, 10 participants were chosen as controls. The control participants needed to have had a mammographic examination in the same month in which the last screening examination of the interval cancer patient was performed. To be eligible as control, the women should not have been recalled on the basis of this mammographic examination and they should not have been diagnosed with breast cancer within 2 years after this	Percent dense volume using Volpara or percent density using BIRADS 5 th edition	To measure to what extent the methods can identify women at high masking risk, the mammograms were divided in a high and low masking risk group by thresholding the risk measure. Then, the sensitivity of the masking measures was computed as the number of interval cancers in the high-risk group divided by the total number of interval cancers. The false positive rate is calculated as the percentage of normal controls selected as at high masking risk at the same threshold. In the context of risk stratification for supplemental screening, the proportion of controls selected as at high masking risk can be seen as supplemental screening rate and the	1; The Netherlands	Given that the exact cancer location was unknown and that the diagnostic mammograms were not available, it was not possible to review the interval cancers and to confirm that masking is the cause for a cancer diagnosis outside the screening program. CC images were not available for all exams. BIRADS density assessments of only one radiologist were available. Many studies found inter- and intra-reader variability in breast density assessment using BI-RADS. Therefore, to make a definitive comparison between the automated methods and radiologists assessments, an extensive reader study should be conducted with multiple readers.

Kerlikowske 2015 ⁶²	examination. Controls without a density map, due to failure of the computation, were replaced. (n=111 cases + 1110 controls). Mean age 59.2 years. Women aged 40-74 years who did not have a history of breast cancer or breast	Mammographic density using	proportion of interval cancers gives an estimate about the cancers that might be detectable with additional imaging at that supplemental screening rate. Interval cancer rate and false positive rate by breast density	Not stated; USA	The cut-points used for defining low performance were developed for
	implants and had complete information on demographic and breast health history information (n=365,426)	BIRADS			identifying minimally acceptable performance levels for screening mammography interpretation for invasive and DCIS outcomes combined; the authors state that they do not know if these performance cut-points are related to long-term outcomes such as breast cancer mortality. For some subgroups with an average interval cancer rate <1/1,000 mammograms, they cannot rule out a higher interval cancer rate because the upper 95% confidence limit exceeds one. A 24-month interval was not evaluated since women may return early for screening and/or have mammograms outside the BCSC. Participation rate not stated. 19.1% aged 40-49 years and 13.4% aged 70-74 years
Nelson 2016 ⁵⁹	Women aged 40 to 89 years who had routine screening with digital mammography (n=405,191)	Mammographic density using BIRADS 4 th edition	Rates of false-positive and false-negative mammography results and recommendations for additional imaging and biopsies from a single screening round	5 registries; USA	The BCSC data reflect opportunistic screening in a fluctuating population of women in the U.S. whose information was collected by the participating registries. Findings may not be applicable to other populations. Limitations also include restrictions of registry data with pre- defined data elements and the inherent biases of observational data. Some outcomes, such as the effectiveness and

					harms of different screening intervals, would be more accurately determined by comparing outcomes between women who were randomly assigned to comparison groups. 16.3% had missing data for breast density. 28.1% aged 40–49 years, 12.4% aged 70– 79 years and 4.6% aged 80–89 years.
Rawashdeh 2013 ⁵⁸	A single-image bank containing 60 digital cases containing 20 positive (biopsy- proven) cases with a single focus of cancer in 16 cases and multicentric cancer in 4 cases (resulting in a total of 24 cancers) (n=60). Mean 54 years (range 47 to 78 years)	BIRADS 3 rd edition	Detectability of lesions by breast density in a reader study	Not stated; Australia	The same radiologist who chose the images was responsible for assessing breast density; <100 images
Timmermans 2017 ⁶⁰	Women aged between 50 and 69 years (n=351,532)	BI-RADS 4 th edition	Cancer detection rate, interval cancer rate, third readings and correlated false- positives by breast density category	Not stated; Belgium	Subdivision of ICs in true, missed and minimal signs was not performed in the present study. A low statistical power hampered reaching statistical significance in differences between modalities for the BI-RADS IV class data.
Wanders 2017 ⁷	Women aged 50–75 years participating in a biennial screening program (n=111,898 examinations belonging to 53,239 women)	Volpara	Interval cancers by density	1; The Netherlands	A limitation of this study is that during the study period, the MLO view was the standardly acquired view for the subsequent screening rounds and CC views were only taken in addition to MLO during the first screening round or by indication during subsequent rounds. As a result, breast density was determined based on only MLO views for some examinations and on both MLO and CC views for other examinations in our main analysis. Volpara's volumetric percent density measured on CC views tends to be

		somewhat higher than on MLO views. As
		CC views are more often performed
		among women with dense breasts and
		women with a suspicious region on their
		MLO view, breast density might be
		somewhat artificially elevated for these
		women. Our sensitivity analysis using VDG
		categories based on volumetric percent
		density from the MLO views only did not
		lead to different conclusions. Screening
		sensitivity is presumably higher when
		both MLO and CC views are available
		compared to MLO views only. Therefore,
		standardly taking both MLO and CC views
		would lead to higher sensitivity,
		particularly in women with fatty breasts as
		they are the ones who most often receive
		MLO views only. This would lead to larger
		differences in screening performance
		across breast density categories.

Table b: Mammographic sensitivity and risk of interval cancers by density

Study	Mammographic sensitivity by density	Risk of interval cancers by density			Risk of bias
		Unadjusted	Age- adjusted	Adjusted for risk factors apart from age	
Destounis 2017 ¹⁸	Mammographic sensitivity by BIRADS density: Fatty replaced 82% Scattered fibroglandular 90% Heterogeneously dense 84%	In univariate analysis, density was associated with the risk of diagnosis of interval cancer versus screen-detected cancer. BIRADS 3 vs. 1 or 2: OR 1.91 (1.07-3.40), p=0.028	BIRADS 3 vs. 1 or 2: OR 1.60 (0.89-2.89)	After adjustment for age and menopausal	High: 20% women excluded for unclear
	Extremely dense 66% R ² = 0.463	BIRADS 4 vs. 1 or 2: OR 5.00 (2.43-10.33), p<0.001		status, density was	reasons
	Mammographic sensitivity by automated density:	Volpara automated density grade 3 vs. 1 or 2: OR 1.94 (1.10-3.43), p=0.021	BIRADS 4 vs. 1 or 2:	the only risk factor	

Grade 1 95%	Volpara automated density grade 4 vs. 1 or 2:	OR 3.82	significantly
Grade 2 89%	OR 5.60 (2.99-10.47), p<0.001	(1.82-8.06),	associated
Grade 3 83%		p<0.001	with interval
Grade 4 65%	Volpara volumetric breast density quartile 2 vs. quartile 1: OR 1.73 (0.72-		cancer rather
$R^2 = 0.914$	4.13)	Volpara	than screen-
		automated	detected
	Volpara volumetric breast density quartile 3 vs. quartile 1: OR 2.08 (0.90-	density	cancer.
	4.83)	grade 3 vs.	BIRADS 3 vs.
		1 or 2: OR	1 or 2: OR
	Volpara volumetric breast density quartile 4 vs. quartile 1: OR 5.58 (2.61-	1.64 (0.92-	1.58 (0.87-
	11.93), p<0.001	2.94)	2.86)
	11.55), p<0.001	2.34)	2.00)
		Volpara	BIRADS 4 vs.
		automated	1 or 2: OR
		density	3.60 (1.69-
		grade 4 vs.	7.69),
		1 or 2: OR	p<0.001
		4.14 (2.13-	p<0.001
		4.14 (2.15- 8.03),	Volpara
		a.03), p<0.001	automated
		p<0.001	
		Malaana	density grade
		Volpara	3 vs. 1 or 2:
		volumetric	OR 1.66
		breast	(0.92-2.98)
		density	
		quartile 2	Volpara
		vs. quartile	automated
		1: OR 1.67	density grade
		(0.70-4.01)	4 vs. 1 or 2:
			OR 3.90
			(1.99-7.64),
		Volpara	p<0.001
		volumetric	
		breast	Volpara
		density	volumetric
		quartile 3	breast
		vs. quartile	density
		1: OR 1.85	quartile 2 vs.
		(0.79-4.33)	quartile 1: OR

					Volpara volumetric breast density quartile 4 vs. quartile 1: OR 4.17 (1.89-9.21), p<0.001	1.62 (0.67- 3.88) Volpara volumetric breast density quartile 3 vs. quartile 1: OR 1.85 (0.79- 4.35) Volpara volumetric breast density quartile 4 vs. quartile 1: OR 3.96 (1.79- 8.80), p=0.001	
Holland 2017 ⁶¹	-	had dense breasts. Of the 63.0% (CI 53.5–72.0) wer RR of dense breasts amon Cannot calculate OR of ca case-control study so pro	e women develo e classified as de ng those with in ancer in dense ve portions of canc	terval cancer = 63/38.5 = 1.64 s. non-dense breasts as this was a ærs/non-cancers were selected, not	-	-	Moderate: little information on confounders
Kerlikowske 2015 ⁶²	-	the proportions that wou Almost entirely fat Scattered fibroglandular densities	Id occur in a pop No invasive cancer N (%) 96,608 (11.7) 338,882 (40.9)	pulation. Invasive interval cancer within 12 months of screening mammography N (%) 214 (7.9) 1084 (40.2)	-	-	Moderate: unclear how many women excluded; little information on confounders. Not generalisable to our population as

		Odds of ca 0.00298 Odds ratio 1.19 Interval ca	y dense ncer in dens ncer in non of cancer ir ncer rate pe	-dense breasts = (2 n dense vs. non-der er 1000 mammogra	1178 (43.7) 220 (8.2) 220)/(326568+66701 14+1084)/(96608+338 use breasts = 0.00355/ ms (95% CI). Bold nur ancer rate >1/1000 m	8882) = /0.00298 = nbers outside			19.1% aged 40-49 years and 13.4% aged 70-74 years
		Age (years)	Almost entirely	oreast density Scattered fibroglandular	Heterogeneously dense	Extremely dense			
		40 - 49	fat 0.19 (0.04, 0.56)	densities 0.26 (0.16, 0.40)	0.76 (0.61, 0.93)	0.98 (0.67, 1.37)			
		50 – 59	0.14 (0.05, 0.34)	0.33 (0.23, 0.45)	0.80 (0.65, 0.98)	1.11 (0.72, 1.64)			
		60 – 69	0.23 (0.10, 0.45)	0.49 (0.37, 0.65)	0.96 (0.75, 1.22)	1.13 (0.54, 2.09)			
		70 – 74	0.35 (0.10, 0.90)	0.55 (0.33, 0.86)	1.15 (0.73, 1.72)	3.45 (1.27, 7.50)			
		Rate goes	up by densit	ty at all ages.					
Nelson 2016 ⁵⁹	Women with almost entirely fat and scattered fibroglandular densities had lower rates of false-negative mammography results than those with other types of breast density for ages 40 to 69 years. Rates of false-negative digital mammography results by	-					-	-	Moderate: number excluded not stated; age, BMI, ethnicity and
	different ways of dividing up the breast density categories								menopausal status

(Number per 1,000 women scre	eened per round	and 95% CI;
option C is the BIRADS categori	,	
	40-49	р
Women screened, n	113,770	
A Fat-Scattered	0.4 (0.3, 0.6)	<0.001
Heterogeneous	1.3 (1.0, 1.7)	
Extreme	1.7 (1.2, 2.5)	
B Fat	0.2 (0.0, 0.9)	<0.001
Scattered	0.5 (0.3, 0.7)	
Heterogeneous-Extreme		
C Fat	0.2 (0.0, 0.9)	<0.001
Scattered	0.5 (0.3, 0.7)	
Heterogeneous	1.3 (1.0, 1.7)	
Extreme	1.7 (1.2, 2.5)	
D Fat-Scattered	0.4 (0.3, 0.6)	<0.001
Heterogeneous-Extreme	1.4 (1.2, 1.8)	
	50-59 years	р
Women screened, n	127,958	0.000
A Fat-Scattered	0.6 (0.4, 0.8)	0.002
Heterogeneous	1.4 (1.0, 2.0)	
Extreme	1.6 (0.9, 2.8)	<0.001
B Fat	0.3 (0.1, 0.7)	<0.001
Scattered	0.7 (0.5, 0.9)	
Heterogeneous-Extreme C Fat	1.5 (1.1, 1.9)	<0.001
C Fat Scattered	0.3 (0.1, 0.7) 0.7 (0.5, 0.9)	<0.001
Heterogeneous Extreme	1.4 (1.0, 2.0)	
D Fat-Scattered	1.6 (0.9, 2.8)	< 0.001
Heterogeneous-Extreme	0.6 (0.4, 0.8) 1.5 (1.1, 1.9)	<0.001
neterogeneous-Extreme	1.5 (1.1, 1.9)	
	60-69 years	р
Women screened, n	94,507	Ч
A Fat-Scattered	0.8 (0.5, 1.1)	0.006
Heterogeneous	1.7 (1.3, 2.3)	5.000
Extreme	1.2 (0.6, 2.7)	
B Fat	0.6 (0.2, 1.5)	0.007
Scattered	0.8 (0.6, 1.2)	5.007
Heterogeneous-Extreme	1.6 (1.2, 2.2)	
neterogeneous-Extreme	1.0 (1.2, 2.2)	

	C Fat Scattered Heterogeneous Extreme D Fat-Scattered Heterogeneous-Extreme Women screened, n A Fat-Scattered Heterogeneous Extreme B Fat Scattered Heterogeneous-Extreme	0.6 (0.2, 1.5) 0.8 (0.6, 1.2) 1.7(1.3, 2.3) 1.2 (0.6, 2.7) 0.8 (0.5, 1.1) 1.6 (1.2, 2.2) 70-79 years 50,204 1.0 (0.6, 1.5) 2.3 (1.6, 3.4) 5.6 (2.4, 12.9) 0.3 (0.1, 1.1) 1.2 (0.7, 1.9)	0.02 0.002 p 0.01 0.001
	Heterogeneous Extreme D Fat-Scattered Heterogeneous-Extreme Women screened, n A Fat-Scattered Heterogeneous Extreme B Fat Scattered	1.7(1.3, 2.3) 1.2 (0.6, 2.7) 0.8 (0.5, 1.1) 1.6 (1.2, 2.2) 70-79 years 50,204 1.0 (0.6, 1.5) 2.3 (1.6, 3.4) 5.6 (2.4, 12.9) 0.3 (0.1, 1.1)	p 0.01
	Extreme D Fat-Scattered Heterogeneous-Extreme Women screened, n A Fat-Scattered Heterogeneous Extreme B Fat Scattered	1.2 (0.6, 2.7) 0.8 (0.5, 1.1) 1.6 (1.2, 2.2) 70-79 years 50,204 1.0 (0.6, 1.5) 2.3 (1.6, 3.4) 5.6 (2.4, 12.9) 0.3 (0.1, 1.1)	p 0.01
	D Fat-Scattered Heterogeneous-Extreme Women screened, n A Fat-Scattered Heterogeneous Extreme B Fat Scattered	0.8 (0.5, 1.1) 1.6 (1.2, 2.2) 70-79 years 50,204 1.0 (0.6, 1.5) 2.3 (1.6, 3.4) 5.6 (2.4, 12.9) 0.3 (0.1, 1.1)	p 0.01
	Heterogeneous-Extreme Women screened, n A Fat-Scattered Heterogeneous Extreme B Fat Scattered	1.6 (1.2, 2.2) 70-79 years 50,204 1.0 (0.6, 1.5) 2.3 (1.6, 3.4) 5.6 (2.4, 12.9) 0.3 (0.1, 1.1)	p 0.01
	Women screened, n A Fat-Scattered Heterogeneous Extreme B Fat Scattered	70-79 years 50,204 1.0 (0.6, 1.5) 2.3 (1.6, 3.4) 5.6 (2.4, 12.9) 0.3 (0.1, 1.1)	0.01
	A Fat-Scattered Heterogeneous Extreme B Fat Scattered	50,204 1.0 (0.6, 1.5) 2.3 (1.6, 3.4) 5.6 (2.4, 12.9) 0.3 (0.1, 1.1)	0.01
	A Fat-Scattered Heterogeneous Extreme B Fat Scattered	50,204 1.0 (0.6, 1.5) 2.3 (1.6, 3.4) 5.6 (2.4, 12.9) 0.3 (0.1, 1.1)	0.01
	A Fat-Scattered Heterogeneous Extreme B Fat Scattered	1.0 (0.6, 1.5) 2.3 (1.6, 3.4) 5.6 (2.4, 12.9) 0.3 (0.1, 1.1)	
	Heterogeneous Extreme B Fat Scattered	2.3 (1.6, 3.4) 5.6 (2.4, 12.9) 0.3 (0.1, 1.1)	
	Extreme B Fat Scattered	5.6 (2.4, 12.9) 0.3 (0.1, 1.1)	0.001
	B Fat Scattered	0.3 (0.1, 1.1)	0.001
	Scattered		0.001
		12(0710)	0.001
	Heterogeneous-Extreme		
		2.6 (1.8, 3.7)	
	C Fat	0.3 (0.1, 1.1)	0.002
	Scattered	1.2 (0.7, 1.9)	
	Heterogeneous	2.3 (1.6, 3.4)	
	Extreme	5.6 (2.4, 12.9)	
	D Fat-Scattered	1.0 (0.6, 1.5)	0.003
	Heterogeneous-Extreme	2.6 (1.8, 3.7)	
		80-89 years	р
	Women screened, n	18,752	
	A Fat-Scattered	0.9 (0.5, 1.6)	0.25
	Heterogeneous	1.1 (0.5, 2.4)	
	Extreme	6.9 (2.5, 18.5)	
	B Fat	0.4 (0.1, 3.1)	0.14
	Scattered	1.0 (0.6, 1.7)	
	Heterogeneous-Extreme	1.7 (0.8, 3.3)	
	C Fat	0.4 (0.1, 3.1)	0.17
	Scattered	1.0 (0.6, 1.7)	
	Heterogeneous	1.1 (0.5, 2.4)	
	Extreme	6.9 (2.5, 18.5)	
	D Fat-Scattered	0.9 (0.5, 1.6)	0.18
	Heterogeneous-Extreme	1.7 (0.8, 3.3)	
Rawashdeh	There was a negative correlation		letection on
201358	mammography and breast densit		
			, in the second s

					but no other details
Timmermans 2017 ⁶⁰	-	There is a systematic increase of interval cancer rate with breast-density class. The percentage of cancers detected in the screening programme over the total number of cancers registered decreases from 84% for density class I to 46% for class IV.	-	-	Moderate: Age range of screening programme stated but no details of sample in terms of mean age, BMI, ethnicity or menopausal status
Wanders 2017 ⁷	Sensitivity of screening (%): VDG 1: 85.7% (78.1; 91.0) VDG 2: 77.6% (73.2; 81.5) VDG 3: 69.5% (64.1; 74.4) VDG 4: 61.0% (51.2; 70.0) P<0.001	Interval breast cancer rates were higher in higher breast density categories compared to lower density categories with a significant linear trend (p-trend<0.001). Interval cancer rates in the first year after a screening examination were 0.2, 0.8, 1.2, and 2.9% (p-trend<0.001) in Volpara Density Grade (VDG) categories 1, 2, 3, and 4, respectively. All years: Interval cancer/1000: VDG1: 0.7 (0.4; 1.1); VDG 2: 1.9 (1.5; 2.3); VDG 3: 2.9 (2.3; 3.5); VDG 4: 4.4 (3.2; 6.0); p<0.001	-	-	Moderate: No information on BMI, ethnicity or menopausal status

Question 2b

Table a: The identified systematic reviews and the extent to which their methods matched the scope of our review.

	Our scope:	Bae 2016 ⁶⁵	Huo 2014 ⁶⁶	Elias 2014 ⁶⁷	Antoni 2013 ⁶⁸	Cummings 2009 ⁶⁴ and McCormack 2006 ⁶⁹
Question	Q2b: Is mammographic breast density a risk factor for developing breast cancer?	This meta-analysis investigated the association between breast density in mammography and breast cancer risk in Asian women.	To critically review the current literature on mammographic density (MD) and summarize the current evidence for its association with breast cancer (BC).	Features (including density) related to HER2 overexpression (a marker of cancer aggressiveness)	A systematic review of studies of mammographic density (MD) in relation to risk of subtype-specific breast cancer, by ER, PR, and HER2 status or gene expression profiles.	To review prospective studies about models and sex hormone levels to assess breast cancer risk and use meta- analysis with random effects models to summarize the predictive accuracy of breast density.
Population	Women aged 50-70 attending breast cancer screening from the general population (not specifically chosen high-risk groups) with a population prevalence similar to the UK	Asian women. Seven datasets were of premenopausal women and eight were of postmenopausal women	Not stated	Not stated	Age range in included studies 40-84 years	Not reported
Density measurements	BI-RADS scale scored by a single qualified reader BI-RADS scale scored by a group consensus of readers Volpara Quantra Cumulus ImageJ Single energy x-ray absorptiometry (SXA) DM-Density M-Vu Breast Density Absolute fat volume	Wolfe classification; percent density (%); DA, density area (cm ²); MDA, mean dense area (cm ²); TBA, total breast area (cm ²); VDG, volumetric density grade (%); ADA, absolute dense area (cm ²).	BIRADS, Cumulus, Boyd semi- quantitative scale, computer- assisted method (CAM), Tabar, DM- Scan, automated volumetric breast density, automated measure, percent density, semi- automated technique: threshold technique	BI-RADS	BIRADS, percent density, visual (fatty, mixed/dense), Wolfe or Cumulus in different included studies	One study assessed breast density by use of BI-RADS ratings and four measured percent density, in addition to the studies included in McCormack 2006 ⁶⁹

	 Absolute fibroglandular volume Density calculated on a single mammogram view (e.g. MLO) Density calculated from 2 views (e.g. MLO plus CC) Others? 		(TT), fully automated method (FAM), semi- automated method (SAM), standard mammogram form (SMF)			
Outcomes	 Head to head studies (2 or more types of density measurement) Positive and negative concordance between pairs of tests (presented as 2x2 or YxY tables) comparison of characteristics of discordant cases: in particular comparison of risk of breast cancer (i.e. do cases measured high risk by Volpara and low risk by quantra have a higher risk of breast cancer than cases measured low risk by volpara and high risk by volpara and high risk by volpara at higher risk of breast cancer than cases measured low risk by quantra) and measures of missing cancers at screening such as interval cancers. Single or head to head studies (1 or more types of test) Proportion of women who have an interval 	Effect size based on adjusted odds ratios (adjustment factors not stated)	Mammographic density as a risk factor for breast cancer; association of mammographic density with breast cancer subtypes and tumour characteristics.	Odds ratio of HER overexpression by density categories	Relative risk estimates and their 95% CIs of subtype-specific breast cancer were estimated by individual studies as odds ratios in case– control and case-only studies and as hazard/rate ratios in cohort studies. The most fully adjusted RRs reported were included. Controlling for age was included in eligibility criteria. In case- only studies, we extracted estimates of the ratios of relative risks (RRR) of ER+ versus ER- breast cancer associated with MD categories; if ER+ subtypes were used as the reference group, the inverse of the RRRs and its confidence limits were taken.	Relative risk of breast cancer; all adjusted for age; some studies adjusted for additional factors which were not stated except to say that studies that further adjust for body mass index or weight observed somewhat stronger associations

	 cancer after screening by density for each test Proportion of women who have breast cancer by density for each test (includes reporting of absolute risk which is of particular interest in low density groups) Distribution of cancer type by risk group for each test Odds or risk ratios from <u>unadjusted</u> univariable models of density as a predictor of risk Odds or risk ratios from adjusted multivariate models of density as a predictor of risk Predictive accuracy of multivariate models including density as a predictor of risk (if time permits). 					
Study design	Head to head or single arm studies	Cohort or case control studies	Not stated	Not stated	(i) Case–control/ case- cohort/ cohort studies in which MD in cases, defined by subtype, is compared to non-cases and (ii) case-only designs where age-adjusted MD in ER+ cases is compared to that in ER- cases.	Prospective studies

Limits (language and date)	English; from 2000	Language not stated: up to December 31, 2015	English; date not stated	Stated to be no restrictions (assume this means none for language); date to February 8, 2013	English; 5th June 2012	Language not stated; January 1, 2004, through January 1, 2008
Limitations		Overall ES from all 6 articles not calculated, because the number of articles related to Asian women was small and because the breast density index varied across articles. The subgroup analysis could not include results that were not divided by menopausal status. The analysis of premenopausal women was insufficient for dose-response meta- regression (DRMR). The subjects included only women who were born and lived in Asia (women born in Asia but emigrated overseas excluded). In the case- control studies, the most recent mammogram before breast cancer diagnosis were used, but this does not reflect the fact that breast density changes with age.	Very little information on systematic review methods	The authors did not formally use a quality assessment tool; the results from this meta- analysis reflect univariable associations only, as individual studies did not adjust their results for potential confounders, such as lesion size or histologic breast cancer subtype, thus precluding solid causal inference.	Differences in density assessment methods. Restricted to English- language publications and only found studies conducted in North America and Europe, in predominantly Caucasian women, thus other countries and ethnic groups, particularly at lower breast cancer risk are not included. Additionally, there was the lack of power to analyse combinations of ER and PR status.	The studies reviewed had various designs, populations, and methods of analysing data. Although breast density is a strong risk factor for breast cancer, BI-RADS has only modest reproducibility and more reproducibile quantitative approaches are not validated or feasible for clinical use; so increased predictive accuracy may not be applicable to current clinical practice.

AMSTAR Checklist	Bae 2016 ⁶⁵	Huo 2014 ⁶⁶	Elias 2014 ⁶⁷	Antoni 2013 ⁶⁸	Cummings 2009 ⁶⁴ and McCormack 2006 ⁶⁹
1. Was an 'a priori' design provided?	Search strategy etc presented; assume a priori design. Article selection was conducted in accordance with the preferred reporting items proposed for systematic reviews and meta-analyses	No	Not stated	Search strategy etc presented; assume a priori design.	Search strategy etc presented; assume a priori design.
2. Was there duplicate study selection/ data extraction?	Not stated	Not stated	Yes for both selection and data extraction	Yes for data extraction: The RRs for each MD category were extracted independently by two of us (SA and VM). Not stated for study selection	Not stated
3. Was a comprehensive literature search performed?	[(cancer) OR (neoplasm)] AND [(density) OR (index)] AND [(Asia) OR	'mammographic dens*', 'dense mammary tissue' or 'percent dens*' were	We performed a comprehensive systematic literature search of MEDLINE and EMBASE on February 8, 2013 using synonyms for HER2 and the imaging modalities of interest in combination with breast	Medline only. The search criteria aimed to identify publications that contained all three of (i) breast cancer, (ii) mammographic density, and (iii) an indication that subtypes were analyzed; where the following terms related to (i) breast cancer: "breast cancer", "breast neoplasm", "breast tumor", (ii) mammographic density: "breast density", "mammograph* density",	The systematic review and meta-analysis by McCormack et al. analyzed studies about the association between breast density and risk of breast cancer that were published up to November 30, 2005. To update that review, we surveyed MEDLINE and EMBASE databases from January 1, 2004, through January 1, 2008, by use of the terms "breast density" or "mammographic density" that were cross-

Table b: Quality assessment of systematic reviews using AMSTAR criteria

				pattern", "Wolfe", "BIRADS" or "Tabar", and (iii) subtypes: "receptor", "luminal", "basal", "triple negative", "Sorlie", "HER- 2", "HER2". Studies identified using this search were scrutinised to find out whether (i) they examined the association of interest and (ii) age had been controlled for either through design features (via matching on age or restricting to a narrow age range) or through adjustment.	
4. Was the status of publication (i.e. grey literature) used as an inclusion criterion?		Not stated	No grey literature	Not stated	Not stated
5. Was a list of studies (included and excluded) provided?	Include: yes Excluded: No		Include: yes Excluded: No	Include: yes Excluded: No	Νο
6. Were the characteristics of the included studies provided?	Yes	Yes	Yes	Yes: Tables 1, 2 and 3	No
7. Was the scientific quality of the included studies	No	No	No	No	No

assessed and documented?					
8. Was the scientific quality of the included studies used appropriately in formulating conclusions?	No	No	No	No	No
9. Were the methods used to combine the findings of studies appropriate?	Yes; meta-analysis with consideration of heterogeneity	Narrative only	Yes; meta-analysis with consideration of heterogeneity	studies with age adjustment shown	No unadjusted analyses; all adjusted for age; some studies adjusted for additional factors which were not stated except to say that studies that further adjustment for body mass index or weight observed somewhat stronger associations
10. Was the likelihood of publication bias assessed?	No	No	Yes: Visual inspection of funnel plot asymmetry in combination with Egger tests generally led to a low suspicion for publication bias, albeit the number of studies was sometimes too low for proper evaluation (Supplementary Figs. S81– S147).	Not reported	Not reported

ſ	11. Was the conflict	Yes: The authors have no	Yes: The authors declare	Yes: No potential conflicts of	Yes: The authors declare that they have no	Not reported
	of interest included?	conflicts of interest	that they have no	interest were disclosed.	competing interests	
		associated with the	conflict of interests			
		material presented in				
		this paper.				

Table c: Systematic review results, search date, number of included studies and notes.

Systematic review identified	Results	Search date; number of studies	Notes
Bae 2016. ⁶⁵	Breast cancer risk in Asian women increased with breast density measured using percent density. An overall ES reflecting information from all 6 articles was not calculated, because the number of articles was small and the breast density index varied across articles. For premenopausal women assessed using percent density, the sES was 3.23 (95% CI 2.23, 4.66; two studies). For postmenopausal women assessed using percent density, the sES was 1.62 (95% CI 1.13, 2.32; three studies). The authors concluded that breast cancer risk in Asian women increased with breast density measured using percent density. For pre- and post-menopausal women assessed using Volpara, the summary effect size (sES) was 2.52 (95% CI 1.84, 3.46; one study).	Until December 31, 2015 N=6	Asian women only
Huo 2014. ⁶⁶	Mammographic density is associated with increased risk of breast cancer diagnosis. One of the BIRADS studies was reported as showing the OR of an interval cancer for women with dense breasts was 1.62, and the age-adjusted rate ratio was 2.45 for breast cancer incidence (no 95% CI shown). The other BIRADS study was reported as showing that BIRADS IV breasts were more often mammographically occult (no data shown). They found one study using Cumulus and reported that ≥50% density was associated with a 2.63-fold risk of developing breast cancer compared to density <10%; and high density was also associated with ER- positive tumours. The other study of a computer-assisted (semi-automated) method (not stated which) showed that dense area was a better predictor of breast cancer risk than percent density (but no data shown).	Not stated N=37	Very limited information on systematic review methods so scores poorly on AMSTAR
Elias 2014. ⁶⁷	Extremely dense breasts on mammography increased the chance of HER2 overexpression (pooled odds ratio [pOR] 1.37; 95% CI, 1.07–1.76).	Through February 2013 N=14	Review focused mainly on HER2 over-expression

Antoni 2013.68	The review reported that mammographic density is a strong marker of breast cancer risk. For the eligible	To 5 th June 2012	Q2b by cancer type.
	study using percent density, the relative risk of ER+ tumours was 1.38 (1.22, 1.57) for low vs. minimal	N=19	Wide age range; no unadjusted
	density and the relative risk of ER- tumours was 0.95 (0.67, 1.34). These risks were not shown for the		analyses; did not report quality
	eligible BIRADS studies.		assessment of included studies
Cummings 2009 ⁶⁴	The authors found that breast density was strongly associated with breast cancer: relative risk vs. BIRADS	January 1, 2004,	Update of McCormack 2006 ⁶⁹ but
and McCormack	category I was 2.03 (95% CI 1.61, 2.56) for BIRADS II; 2.95 (95% CI 2.32, 3.73) for BIRADS III; and 4.03 (95%	through January	does not report the population
2006. ⁶⁹	CI 3.10, 5.26) for BIRADS IV. For measurement of percent density, vs. <5% dense area, the RR was 1.74	1, 2008	covered or other details of the
	(95% CI 1.50, 2.03) for 5 – 24% density; 2.15 (95% CI 1.87, 2.48) for 25 – 49% density; 2.92 (95% CI 2.55,	N=5 additional to	included (or excluded) studies
	3.34) for 50 – 74% density; and 4.20 (95% CI 3.61, 4.89) for >75% density.	those in	
		McCormack 2006	

Question 3

Table a: Study design

Yellow highlight = not followed for interval cancers

Study (Country)	Population	Intervention: mammography	Comparator: ultrasound in mammography-negative women	Reference standard	Study design	Limitations
Chang 2015 ⁷⁰ (Korea)	Patients who received mammography (MG) and ultrasound (US) screenings as a prevalence screening examination (n=1526)	Dedicated MG units (Senographic2000 DS units)	Hand-held; high-resolution US units with a 14-15 MHz linear transducer; standardised scanning protocol; bilateral whole breast	Most severe biopsy result within 1 year of screening and clinical follow up at 1 year	Retrospective study	Retrospective, single- institution study performed in a screening center with all examination results interpreted by radiologists specializing in breast imaging. Therefore, the results may not be applicable to other centers with different patient populations or less experience with breast US. Data for cancer detection by US are only available for prevalence screening.

						Although the cancer detection rate and PPV of incidence US screening can be expected to be lower than that of prevalence screening, this is an important consideration because most breast cancer screening examinations involve incidence rather than prevalence screening. MG and US examinations were performed at the same time; the interpretation of mammographic findings can be affected by the US findings. The number of US screen detected cancer was small so it was impossible to find the characteristics of
						this study. Median 47 (range 27-79)
Destounis 2015 ⁷¹ and	Screening breast sonography due to notification of dense	Either a Selenia LoRad or Dimensions unit (Hologic,	Bilateral hand-held US; linear high-frequency	Biopsy/surgical excision/histology; no	Retrospective electronic chart	years. There was a large population of patients with dense tissue
Destounis 2017 ⁸³ (USA)	breast tissue (n=4898 women)	Inc, Danbury, CT).	transducer; whole breast with standardised protocol using either an iU22 (Philips Healthcare, Bothell, WA) or	reporting of follow up of test-negative patients	review	pursuing screening sonography who also had additional risk factors. When comparing with our general
			Acuson S2000 (Siemens Medical Solutions, Malvern, PA) system. All sonograms reviewed by 1 of the radiologists with all prior			screening population, we did note that the rate of patients with additional risk factors was quite a bit higher in the population undergoing

			images available for comparison			screening sonography. This factor may have led to a subselection bias. Although we offered screening sonography services to all patients in our screening population identified as having dense breast tissue, those with additional risk
						factors may have been more inclined to pursue further screening, which could also have had an impact on our study results, as our cancer detection rate could have been higher because of the higher-risk patients. Unrepresentative self-
						Unrepresentative self- selected sample. Mean 55.8 years 18–35 years: 23 (0.47%) 36–45 years: 855 (17.46%) 46–55 years: 1822 (37.19%) 56–65 years: 1277 (26.07%) 66–75 years: 712 (14.54%) >76 years: 209 (4.27%)
Hwang 2015 ⁷² (Korea)	Asymptomatic women, aged at least 30 years, who underwent mammograms for breast screening (n= 1727)	Bilateral four-view mammograms were obtained using digital mammographic units (Senographe DS, General Electric Medical Systems, Milwaukee, WI, USA; Lorad Selenia, Hologic, Danbury, CT, USA).	Handheld US was performed including bilateral whole breasts and both axillary areas using US units (HDI 5000, Advanced Technology Laboratories, Bothell, WA, USA; IU22, Philips Healthcare, Bothell, WA, USA; Logic 700, General	Pathology and follow- up breast imaging until the year 2011 (around 4 years)	Retrospective cohort study	First, the authors excluded the women who did not visit their institution until December 2011 and the women with mammographic BI-RADS categories 0 and 3. Therefore, there could be more interval cancers which were misclassified as test-

Electric Medical systems,	negatives in the women who
Milwaukee, WI, USA),	underwent mammography
equipped with 5–12-MHz	plus US screening but were
linear-array transducers	excluded. Second, almost half
inical array consucers	of the group had baseline
	screening US and all US
	examinations were
	performed by experienced
	radiologists, which may result
	in favorable screening US
	outcomes. The cost of
	handheld US is not so
	attractive to patients. Third,
	the benefit of screening US
	was only for the detection of
	early cancers, and did not
	consider mortality reduction.
	Multicenter, randomised,
	prospective studies are
	required to validate US
	efficacy as a second line
	screening tool, and the large-
	scale data are needed to
	establish the screening
	guideline.
	Participants were self-
	selected: US was performed
	in women who requested
	them, regardless of their risk
	factors.
	Median age: 49.5; range 30–
	76 years.
	The majority of the women
	were in their forties (n=763,
	44.2%) or in their fifties

						(n=693, 40.1%), and the rest were in their sixties (n=143, 8.3%), 30's (n=107, 6.2%), and seventies (n=21, 1.2%).
Kim 2016 ⁷³ (Korea)	Women who underwent screening mammography, who had dense breast defined as BI-RADS density grade 3 (heterogeneously dense) or 4 (extremely dense) at mammography, who had negative findings defined as BI- RADS final assessment category 1 or 2 at mammography, and who had radiologist-performed, hand- held supplemental US examinations performed within 3 months after mammography (n= 3171)	Digital mammography system (Lorad/Hologic Selenia, Lorad/Hologic, Danbury, CT; SENOGRAPHE 2000D, GE Medical Systems, Milwaukee, WI).	Hand-held bilateral whole- breast US was performed with a 12- to 5-MHz linear array transducer (HDI 5000 or iU22, Phillips-Advanced Technology Laboratories, Bothell, WA; Logic 9, GE Medical Systems, Milwaukee, WI). Assessment used the "downgrade criteria": Since March 2010 (the starting year of this study), in order to reduce the false positive rate, the authors have trained their radiologists to classify the following findings as category 2: a complicated cyst 5 mm or smaller which were observed as a circumscribed, homogeneous, and hypoechoic lesion (A) and a circumscribed oval-shaped solid mass 5 mm or smaller without any suspicious US features (B). The 2 criteria for downgrading were selected in consensus after an in-depth discussion	Pathology and 1 year follow up	Retrospective cohort study	This study was retrospectively conducted in a single institution, third-referral center by breast radiologists. Generalisation of the results may be limited for other study populations, and for examinations performed by technologist or less- experienced physicians. Selection bias might have occurred owing to the exclusion of women without follow-up US for at least 1 year. Due to the retrospective nature of the study, the authors could not analyze from the collected data whether the downgrade criteria was properly applied per patient-level by each radiologist. More systematic training programs and quality control programs using videos, still images, or tests are needed to monitor the quality of each radiologist's classification abilities with the downgrade criteria. Further large-scale, multicenter, prospective studies are

			between staff radiologists based on experience and other publications. During the study period, staff radiologists continued to emphasize the downgrade criteria to fellow radiologists at the weekly conference.			needed to validate the effectiveness of the downgrade criteria. Mean age ± standard deviation: 51.2 ± 7.7; range 24–78 years. "Downgrade criteria" not a standard classification.
Klevos 2017 ⁷⁴ (USA)	Asymptomatic women who were reported to have heterogeneously dense or extremely dense breast tissue and negative mammograms (n= 394)	2D digital study on a Selenia - Hologic unit	Hand-held US using a dedicated breast ultrasound unit (GE LOGIC E9) with a high-resolution linear-array transducer (6–15 MHz).	Biopsy result and mammogram at 12 months	Retrospective cohort study	Small population size, which is likely responsible for the fact that no carcinoma was found. Only 32.5% of women underwent the offered supplemental screening bilateral breast ultrasound (may not be representative; ages not stated).
Moon 2015 ⁷⁵ (Korea)	Screening mammography (n=2005 who were BIRADS 1 or 2 on mammography and had screening ultrasound and 1890 BIRADS 1 or 2 on mammography without ultrasound)	Lorad/Hologic Selenia full- field digital mammography and General Electric senograph digital mammography system	US machine: HDI5000 or iU22, Philips-Advanced Technology Laboratories, Bothwell, WA, USA; Logic 9, GE Medical Systems, Milwaukee, WI, USA; and 5- 12 or 7-12 MHz linear array transducers. Bilateral whole breasts and axillary areas.	Histopathology from biopsy or surgical excision within 12 months of mammography; clinical follow up for at least 12 months	Retrospective cohort study	Retrospective design; there may be selection bias; only a single round of screening regardless of any previously performed screening was included and the prevalence and incidence of breast cancers were not evaluated separately. Seven radiologists interpreted the screening mammography and performed screening ultrasound; inter-observer variability might impact the results. There was no guideline for recommending and

						performing ultrasound – it was performed according to woman's or clinician's preference, i.e. a self- selected sample undergoing ultrasound. Mean 53.8 (range 40 to 87) years
Tagliafico 2016 ⁷⁶ (Italy)	Asymptomatic women (≥ 38 years old) presenting for mammography screening to public hospital-based radiologic services with dedicated breast imaging were eligible if standard 2D digital mammography was classified as Breast Imaging-Reporting and Data System 22 density categories three (heterogeneously dense) or four (extremely dense) and was negative for BC (n=3231)	Mammography (and tomosynthesis) images were acquired using digital mammography units with tomosynthesis capability (Hologic, Selenia Dimensions; Bedford, MA). Standard 2D-mammography and then 3D-mammography (tomosynthesis) acquisitions were performed in women with dense breasts	Bilateral handheld breast ultrasound was performed using 10 MHz as the lowest maximum frequency of the transducer	Excision histopathology in those who received surgery, or on the basis of the completed assessment inclusive of work-up imaging (with or without core-needle biopsy) in all recalled subjects. No follow up for interval cancers.	Prospective multicenter screening trial of tomosynthesis and ultrasound for adjunct screening in women with dense breasts	These results should be interpreted with caution given that this is an interim analysis, and that the study population comprised women who self-referred to breast screening and who had dense mammograms. Although self- referral to breast screening at the participating centers is intended for women at population (average) risk, we are unable to quantify the risk profile of participating women. However, we can confirm that we did not include women with BRCA gene mutations. Included a modest number of cancers in the interim report. Hence, our incremental CDRs are associated with relatively large Cls; we plan to continue the study to provide more precise estimates at its

		Another limitation is that we
		compared a mix of prevalent
		and incident ultrasound
		screening with prevalent
		tomosynthesis screening,
		which might give more
		favorable FP-recall data for
		ultrasound relative to
		tomosynthesis. Also,
		biomarker (eg, estrogen
		receptor/ progesterone
		receptor and human
		epidermal growth factor
		receptor 2) data were not
		available for all of the
		detected cancers.
		ASTOUND focused on screen-
		detection measures, and
		specifically on incremental BC
		detection; we do not have
		longer-term data to
		determine screening benefit
		because this was not within
		the scope of the study. The
		value of adjunct screening
		could be potentially assessed
		by follow up of screened
		subjects and comparing
		interval cancer rates between
		those who had adjunct
		screening and those who did
		not receive adjunct screening.
		No follow up for interval
		cancers.

						Median 51 years
						(interquartile range, 44 to 78
						years; range, 38 to 88 years).
Weigert	Screening ultrasounds	Not stated	Ultrasounds using handheld	Biopsy only; no follow	Retrospective	The current lack of practice
2015 ⁷⁷ and	performed on women with		high-resolution transducers	up for interval cancers	chart review	guidelines for screening
Weigert	, mammographically normal (BI-		(12–5 MHz). None of the	-		breast ultrasound results in
2017 ⁸²	RADS 1, normal breasts or BI-		sites utilised automated			inconsistency among
(USA)	RADS 2, stable of known		breast ultrasound devices.			radiology groups. Ultrasound
	benign finding) but dense					technologists at some sites
	breasts (>50% breast density,					document a minimum of a 3,
	as determined by the					6, 9, and 12 o'clock image,
	interpreting mammographer)					while at other sites they only
	(n= 10282)					record one image if the
						provider deems the breast is
						normal. Furthermore,
						radiologists subjectively
						determine the degree of
						breast density when reading
						screening mammograms and
						inter-rater reliability is low.
						Given the study design, the
						<mark>authors do not have enough</mark>
						<mark>follow-up data to know how</mark>
						many women developed
						interval cancers to calculate
						<mark>an accurate NPV or</mark>
						<mark>sensitivity.</mark>
						They could not differentiate
						<mark>between women who were</mark>
						receiving screening breast
						<mark>ultrasound for the first time</mark>
						and women who had
						previously received screening
						<mark>ultrasounds.</mark>

					Decretive	Possible inconsistency of ultrasound performance and interpretation since various independent groups throughout Connecticut were included in the study. In addition, biopsy results could not be obtained for some of the women with ultrasound BI-RADS scores of 4 and 5; it is uncertain if they declined biopsy or went to another location for follow-up. The authors did not include a rigorous follow-up of patients with BIRAD 3 designation to determine if any of those lesions were actually cancers. Of note, only 30% of eligible women returned for the study most likely due to cost and a lack of education. Age not stated
Wilczek 2016 ⁷⁸ (Sweden)	Women invited for breast cancer service screening mammography; age 40 or older; asymptomatic; ACR3 and ACR4 density (n= 1668)	FFDM Microdose Senographe or Senographe DS FFDM	3D ABUS: U-Systems; linear broadband transducer 6-14 MGHZ. All women with suspicious findings on FFDSM or 3D ABUS recalled and had mammography work-up with complementary views and HHUS.	Biopsy or follow up for interval cancers for 2 years	Prospective cohort study	All dedicated breast radiologists involved in the study had to undergo tutorials prior to study initiation, but even so, each one had to familiarize themselves with this new modality, leading to individual learning curves. 3D ABUS was double read only in cases of discussions, while FFDSM was always double

			read. We did not have access
			to computer-aided detection
			system for 3D ABUS; such a
			system could possibly have
			been of help to reduce
			reading time and improve
			early cancer detection. The
			number of study participants
			was relatively small in the
			context of breast screening
			trials. The study was not
			designed to detect mortality.
			Mean (SD) age 49.5 (7.9),
			range 40-69 years.

Table b: Recall, biopsy and cancer detection rates from the studies found in our update search for ultrasound in mammogram-negative women Yellow highlight = not followed for interval cancers

				US in mammogram-negative women				
Study (Country)	USPSTF Quality Rating	Breast density	Which BIRADS categories (from mammograms) included in study	Recall rate per 1000 screens	Biopsy rate per 1000 screens	Cancer detection rate per 1000 screens		
Chang 2015 ⁷⁰ (Korea)	Fair	Dense or fatty	1 or 2	431/1526 = 282.4/1000	91/1526 = 59.6/1000	5/1526 = 3.3/1000		
		Dense only	1 or 2	366/990 = 370/1000		5/990 = 5.1/1000		
Destounis 2015 ⁷¹ and Destounis 2017 ⁸³ (USA)	<mark>Poor</mark>	<mark>Dense</mark> only	"negative mammograms"	<mark>135/5434 =</mark> 248/1000	<mark>100/4898 =</mark> 20.4/1000	<mark>18/5434 = 3.3/1000</mark>		
Hwang 2015 ⁷² (Korea)	Poor	Dense or fatty	1 or 2	100/1727 = 58/1000	25/1727 = 14.5/1000	8/1727 = 4.6/1000		
		Dense only	1 or 2	NR	NR	8/1349 = 5.9/1000		
Kim 2016 ⁷³ (Korea)	Poor	Dense only	1 or 2	831/3171 = 262/1000	147/3171 = 46.4/1000	9/3171 = 2.8/1000		

Klevos 2017 ⁷⁴ (USA)	Poor	Dense only	1 or 2	69/394 = 175/1000	26/394 = 66.0/1000	0/394 = 0/1000
Moon 2015 ⁷⁵ (Korea)	Poor	Dense or fatty	1 or 2	623/2005 = 311/1000	90/2005 = 44.9/1000	4/2005 = 2.0/1000
		Dense only	1 or 2	592/1656 = 357/1000	88/1656 = 53.1/1000	3/1656 = 1.8/1000
Tagliafico 2016 ⁷⁶ (Italy)	<mark>Poor</mark>	Dense only	"negative mammograms"	<mark>88/3231 =</mark> 27.2/1000	<mark>47/3231 =</mark> 14.5/1000	<mark>23/3231 = 7.1/1,000</mark>
Weigert 2015 ⁷⁷ (USA) Weigert 2017 ⁸² Yr 1	Poor	<mark>Dense</mark> only	<mark>1 or 2</mark>	435/10,282 = 42.3/1000 151/2706 <mark>=</mark>	435/10,282 = 42.3/1000 151/2706 =	24 cancers and 15 high-risk (HR) lesions: total 3.8/1,000; ca 2.3/1,000 11 ca: 4.0/1,000
Year 2 Year 3				55.8/1000 180/3351 = 53.7/1000	55.8/1000 180/3351 = 53.7/1000	9 ca/2 HR: tot: 3.3 and ca 2.7/1000
Year 4				148/4128 = 35.9/1000 53/3331 = 15.9/1000	148/4128 = 35.9/1000 53/3331 = 15.9/1000	13 ca/2 HR: tot: 3.1 and ca 2.7/1000 10 ca/1 HR: tot: 3.3 and ca 3.0/1000
Wilczek 2016 ⁷⁸ (Sweden)	Poor	Dense only	1 or 2	15/1645 = 9.1/1000	12/1645 = 7.3/1000	4/1645 = 2.4/1000

Table c: Sensitivity, specificity, positive predictive value after recall or after biopsy, and negative predictive value of ultrasound in mammogramnegative women

			US in mammo	gram-negative women						
Study	USPSTF	Breast	Recall rate	Biopsy recommended	Cancer detection	Sensitivity (%)	Specificity	PPV1 (%)	PPV2 (%)	NPV (%)
(Country)	Quality	density	(%)	(%)	rate (per 1000		(%)	for recall	for biopsy	
	Rating				screens)					
Chang 2015 ⁷⁰	Fair	Dense or	Recalled	Biopsy recommended	3.3 per 1000	5/5 = 100%	1095/1521 =	5/431 =	5/91 =	1095/1095 =
(Korea)		fatty	(BIRADS 3 or	(BIRADS 4): 104	screen (95% Cl		72.0%	1.2%	5.3%	100%
			4 or 5):	lesions in 91 women	1.2 to 7.9 per					
			431/1526 =	(91/1526 = 5.96%)	1000 screens)					
			28.24%							

		Dense only	NR	NR	Cancer detection rate 5/990 = 5.1 per 1000 screens (95% Cl 1.8 to 12.1 per 1000 screens)	5/5 = 100%	624/985 = 63.4%	5/366 = 1.4%	NR	624/624 = 100%
Destounis 2015 ⁷¹ and Destounis 2017 ⁸³	<mark>Poor</mark>	<mark>Dense</mark> only	<mark>135/5434 =</mark> 24.8%	<mark>100/4898 women =</mark> 2.0%	18/5434 ultrasounds = 3.3 per 1000 screens	Not followed for interval cancers	NR	<mark>18/135 =</mark> 13.3%	<mark>18/100 =</mark> <mark>18%</mark>	Not followed for interval cancers
Hwang 2015 ⁷² (Korea)	Poor	Dense or fatty Dense only	100/1727 (5.8%) NR	25/1727 = 14.5/1000 NR	8/1727 = 4.6 per 1000 cases NR	8/9 = 88.9% 8/9 = 88.9%	1626/1718 = 94.6% NR	8/100 = 8.0% NR	7/25 = 28.0% NR	1626/1627 = 99.9% NR
Kim 2016 ⁷³ (Korea)	Poor	Dense only	831/3171 = 26.2%	147/3171 = 4.6% (4.1 to 6.8)	9 additional cancers of 3171 screens = 2.8 per 1000 screens, 95% Cl 1.3–5.4	9/9 = 100%	2340/3162 = 74.0%	9/831 = 1.1%	9/131 = 6.9%	2340/2340 = 100%
Klevos 2017 ⁷⁴ (USA)	Poor	Dense only	69/394 = 17.5%	26/394 = 6.6%	0	N/A (no cancers found)	N/A	N/A	N/A	N/A
Moon 2015 ⁷⁵ (Korea)	Poor	Dense or fatty	623/2005 = 31.1%	NR	4/2005 = 2.0 per 1000 screens (0.5, 5.1)	4/4 = 100.0%	1382/2001 = 69.1%	4/623 = 0.64%	3/90 = 3.33%	1382/1382 = 100.0%
		Dense only	NR	NR	3/1656 = 1.8 per 1000 screens (0.4, 5.3)	3/3 = 100.0%	1064/1653 = 64.4%	3/592 = 0.51%	2/86 = 2.33%	1064/1064 = 100.0%
<mark>Tagliafico</mark> 2016 ⁷⁶ (Italy)	Poor	<mark>Dense</mark> only	<mark>88/3231 =</mark> <mark>2.72%</mark>	<mark>47/3231 = 1.45%</mark>	23/3231 = 7.1 per 1,000 screens; 95% Cl, 4.2 to 10.0	Not followed for interval cancers	<mark>98.0%</mark>	<mark>23/88 =</mark> <mark>26.1%</mark>	23 per 47 screens (48%; 95% Cl, 34.1 to 63.9)	Not followed for interval cancers
Weigert 2015 ⁷⁷	Poor	Dense only	<mark>1310/10,282</mark> = 12.7%	435/10,282 = 4%	2.3/1,000 women screened	Not followed for interval cancers	<mark>8,972/9,368</mark> = 96%	Cancers only: 5.5%	Cancers only: 5.5%	Not followed for interval cancers

Weigert 2017 ⁸² Year 1 Year 2 Year 3 Year 4 (USA)								7.3% 5.0% 7.4% 18.9%	7.3% 5.0% 7.4% 18.9%	
Wilczek 2016 ⁷⁸	Poor	Dense only	0.91%	12/1645 = 0.73%	4/1645 = 2.4/1000	4/9 = 44.4%	1625/1636 = 99.3%	4/15 = 26.7%	4/12 = 33.3%	1625/1630 = 99.7%
(Sweden)										

Quality assurance guidelines for breast cancer screening radiology from the NHS Breast Screening Programme¹ contain the following radiological quality standards:

Objective	Criteria	Minimum standard	Achievable standard
To minimise the number of women screened	The percentage of women who	(a) Prevalent screen < 10%	(a) Prevalent screen < 7%
who are referred for further tests ‡	are referred for assessment	Incident screen < 7%	Incident screen < 5%

[‡] 'Further tests' includes all second appointments where procedures (including further views and/or clinical examination) beyond those normally undertaken at first appointment are carried out.

In addition, the expected interval cancer rates after mammography are: 0–24 months: 1.2 invasive cancers per 1000 women screened; 25–36 months: 1.4 per 1000 women screened.

Only three studies⁷⁶⁻⁷⁸ had a recall rate for ultrasound below 10%.

The rate of benign biopsies (false positives) were as follows:

Destounis 2015 ⁷¹ and Destounis 2017 ⁸³ (USA)	17.1/1000

Kim 2016 ⁷³ (Korea)	43.6/1000
Klevos 2017 ⁷⁴ (USA)	66.0/1000
Moon 2015 ⁷⁵ (Korea)	51.3/1000
Tagliafico 2016 ⁷⁶ (Italy)	7.4/1000
Weigert 2015 ⁷⁷ (USA)	40.0/1000
Wilczek 2016 ⁷⁸ (Sweden)	4.9/1000

Focusing on the cohort studies reporting data in women with dense breasts only with negative mammography, in which women were followed up for interval cancers, sensitivity ranges from 44% to 100% and specificity from 63% to 99%.

Figure d: Forest plot of sensitivity and specificity of additional ultrasound in mammogram-negative dense breasts

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)
Berg 2012 (high risk)	0	0	0	0	Not estimable	Not estimable	
Brancato 2007 (not screening pop)	0	0	0	0	Not estimable	Not estimable	
Brem 2015 (no data)	0	0	0	0	Not estimable	Not estimable	
Chang 2015	5	361	0	624	1.00 [0.48, 1.00]	0.63 [0.60, 0.66]	
Corsetti 2011 (film)	0	0	0	0	Not estimable	Not estimable	
Destounis (no data)	0	0	0	0	Not estimable	Not estimable	
Girardi 2013 (not data)	0	0	0	0	Not estimable	Not estimable	
Giuliano 2013	42	10	1	3365	0.98 [0.88, 1.00]	1.00 [0.99, 1.00]	
Hooley 2012 (screen/diag)	0	0	0	0	Not estimable	Not estimable	
Hwang 2015	8	0	1	0	0.89 [0.52, 1.00]	Not estimable	
Kelly 2010 (high risk)	0	0	0	0	Not estimable	Not estimable	
Kim 2016	9	822	0	2340	1.00 [0.66, 1.00]	0.74 [0.72, 0.76]	
Klevos 2017 (no data)	0	0	0	0	Not estimable	Not estimable	
Leong 2012 (film)	0	0	0	0	Not estimable	Not estimable	
Moon 2015	3	589	0	1064	1.00 [0.29, 1.00]	0.64 [0.62, 0.67]	
Parris 2013 (not dens)	0	0	0	0	Not estimable	Not estimable	
Tagliafico 2016 (no data)	0	0	0	0	Not estimable	Not estimable	
Venturini 2013 (not dens)	0	0	0	0	Not estimable	Not estimable	
Weigert 15/17 (no data)	0	0	0	0	Not estimable	Not estimable	
Weigert 2012	28	401	1	7450	0.97 [0.82, 1.00]	0.95 [0.94, 0.95]	
Wilczek 2016	4	11	- 5	1625	0.44 [0.14, 0.79]	0.99 [0.99, 1.00]	_
Youk 2011 (film)	0	0	0	0	Not estimable	Not estimable	
							0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Question 4

Table a: Characteristics and findings of cost-effectiveness studies investigating supplemental ultrasound in women with mammography-negative dense breasts

Author (Year)	Type of economic evaluation & model	Population studied	Comparators	Methods (perspective, time horizon and discount rate)	Methods (costs, outcomes, ICER and sensitivity analyses)	Results and main conclusions
Giuliano 2013 ⁸⁰	EE: CCA Model: None – but simple theoretical calculations	Women with dense breasts in a large screening population in the United States.	Intervention: Mammography plus ultrasound Comparator: Mammography only	Study perspective: Medicare and Medicaid reimbursement Time horizon: 1 year Discount rate: Not undertaken Currency/price year: US\$, year not stated	Outcomes: additional treatment for missed cancers Costs: breast ultrasound, missed cancers, treatments ICER: cost per additional treatment for missed cancers Sensitivity analyses: Not undertaken	The cost differential for additional treatment between Stage 1 and Stage 2 breast cancer was \$10,467. The cost-benefit of early detection of stage 1 disease results in a theoretical per capital annual cost savings of \$22.75 per screened patient in the U.S. population, according to their model.
Gray 2017 ⁸⁴ (NB intervention also includes MRI)	EE: CUA Model: Decision- analytic model (discrete	Women eligible for a national breast screening program (NBSP) in the UK	Intervention: Four approaches to stratified NBSP Risk 1 Risk 2	Perspective: National health Service Time horizon: Lifetime Discount rate: 3.5% for both costs and benefits	Outcomes: QALYs Costs: mammography, follow-up, biopsy, treatments, ultrasound, MRI ICER: cost per QALY gained	The risk stratified NBSPs (risk 1 and risk 2) were cost- effective when compared with the current UK NBSP, with ICERs of £16,689 per QALY and £23,924 per QALY, respectively. Stratified NBSP including masking approaches (supplemental screening for

	event		Masking - current screening	Currency/price year: UK f in	Sensitivity analyses: One-way	women with higher breast
	simulation)		approach with supplemental	2015 prices	and probabilistic sensitivity	density) was not a cost-
	sinulation		ultrasound offered to women	2015 prices	analyses	effective alternative, with
					anaryses	,
			with high breast density.			ICERs of £212,947 per QALY
			Women with both high breast			(masking) and £75,254 per
			density and high risk of breast			QALY (risk 1 and masking).
			cancer were offered			When compared with no
			supplemental magnetic			screening, all stratified NBSPs
			resonance imaging (MRI)			could be considered cost-
			instead of ultrasound			effective.
			Risk 1 with masking			
			Comparator:			
			Current UK NBSP and no			
			screening			
			_			
Sprague	EE: CEA	Women eligible for	Intervention: Mammography	Perspective: Federal Payer	Outcomes: QALYs	Supplemental ultrasound
2015 ⁸⁵	Model:	breast screening in	plus supplemental ultrasound	Time horizon: Lifetime	Costs: mammography screening,	screening for women with
	3 micro-	USA. Biennial	Comparator: Mammography	Discount rate: 3% for both	ultrasound, additional imaging,	dense breasts undergoing
	simulation	screening for 50-	alone	costs and benefits	biopsy, cancer treatment	screening mammography
	models	74 year olds;		Currency/price year: US \$ in	ICER: cost per QALY gained	would substantially increase
		Annual screening		2013 prices	Sensitivity analyses: One-way	costs while producing
		for 40-74 year			sensitivity analyses	relatively small benefits in
		olds.				breast cancer deaths averted
						and QALYs gained. The ICER was \$325,000 per QALY
						gained for women with
						heterogeneously or extremely
						dense breasts (biennial
						screening). Restricting
						supplemental ultrasound
						screening to women with
						extremely dense breasts the
		1	1	1	1	charactery actise breasts the

						ICER was \$246,000 per QALY gained (biennial screening). For annual screening the ICERs were even higher than biennial screening.
Weigert 2012 ⁸¹	EE: CCA Model: None	Women with normal mammograms but dense breasts in the USA	Intervention: Mammography plus ultrasound Comparator: Mammography alone	Perspective: Not stated Time horizon: 1 year Discount rate: Not undertaken Currency/price year: US\$, year not stated	Outcomes: Number of breast cancers detected Costs: average reimbursement by CPT-code and insurance company relating to mammograms, ultrasounds and biopsy's including staff time. ICER: Cost per breast cancer found Sensitivity analyses: Not undertaken	Using \$250 per screening ultrasound and \$2,400 per ultrasound-guided biopsy to estimate the costs, the cost per breast cancer found is estimated to be \$110,241

EE = economic evaluation; CCA – cost-consequence analysis; CEA = cost-effectiveness analysis; CUA = cost-utility analysis; ICER = incremental costeffectiveness ratio; QALY = quality-adjusted life year.

Table b: Assessment of the fully-published UK of	t-effectiveness study (note intervention includes MRI as well as ultrasound)

Reference	Gray 2017 ⁸⁴
Interventions and comparators	Interventions
	Risk 1: a risk-based stratification defined by the risk algorithm plus density and texture measures. Three strata (with associated
	screening intervals) were defined by 10-y risks of breast cancer of 1) <3.5% (3-yearly), 2) 3.5%–8% (2-yearly), and 3) >8%
	(annually)
	Risk 2: a risk-based stratification defined by the same algorithm as risk 1 but with strata defined by dividing the population into
	thirds on the basis of 10-y risk (tertiles): 1) the lowest risk tertile (3-yearly), 2) the middle tertile (2-yearly), and 3) the highest
	risk tertile (annually)
	Masking (covering up of tumors in mammograms by dense breast tissue): current screening approach with supplemental
	ultrasound offered to women with high breast density, defined using Volpara density grade 3 or 4. High risk was defined as >8%

	10-y risk of breast cancer. Women with both high breast density and high risk of breast cancer were offered supplemental
	magnetic resonance imaging instead of ultrasound.
	Risk 1 with masking: the risk 1 stratification approach together with the strategy described in the masking approach
	Comparators
	Current UK NBSP: women between 50 and 70 y with screening every 3y using mammography
	No screening : no use of mammography in the population for screening purposes; all cancers would present with clinical signs or symptoms
Research question	To identify the incremental costs and consequences of stratified national breast screening programs (stratified NBSPs) and
Research question	drivers of relative cost-effectiveness.
Church a transp	
Study type	Cost-effectiveness analysis
Study population	Women eligible for an NBSP. Mean +/- SD age (y): base case 48.93 +/- 1.09
Institutional setting	National health care service (NHS)
Country/currency	United Kingdom/£. National currency (£) at 2014 prices
Funding source	Part of a European collaborative project called Adapting Breast Cancer Screening Strategy Using Personalised Risk Estimation (ASSURE). The ASSURE project was funded from a collaborative project grant within the FP7-HEALTH-2012- INNOVATION-1 call (project number: 306088).
Analytical perspective	NHS
Effectiveness	Multiple data sources were used: systematic reviews of effectiveness and utility, published studies reporting costs, and cohort studies embedded in existing NBSPs.
	Mammography and ultrasound sensitivity/specificity etc, interval cancers, survival and effectiveness of MRI referenced. Mammography
	Sensitivity by tumor size modelled as logistic-type function
	β1: sets increase with size 1.47
	β2: sets sensitivity relative to size 6.51
	Maximum sensitivity 0.95%
	Sensitivity by VDG, used to calculate relative sensitivity given tumor size
	Sensitivity VDG1 85.0%
	Sensitivity VDG2 77.6%
	Sensitivity VDG3 69.0%
	Sensitivity VDG4 58.6%
	Recall rate 4.0 per 100 examinations

	False-positive biopsy proportion 2.4%						
	Proportion of screen-detected cancers that are DCIS 20.3%						
	Clinically detected (interval cancers)						
	Cancer size at clinical detection, mean 6.5 doublings (22.62mm)						
	Cancer size at clinical detection, SD 0.535 doublings						
	Survival after breast cancer diagnosis						
	y NPI 1 -5.413						
	y NPI 2 -4.023						
	y NPI 3 -2.465						
	y Advanced cancer, age <50 y -0.527						
	y Advanced cancer, age 50–69 y -0.537						
	y Advanced cancer, age \geq 70 y -0.849						
	US cancer detection						
	VDG3/4 incremental cancers detected with supplemental US 3 per 1000 examinations						
	False-positive (recall) rate, US 98 per 1000 examinations						
	Biopsy rate, US 0.4% Assumed same as mammography						
	Proportion cancers detected by supplemental US that are DCIS 21% Assumed same as mammography						
	MRI cancer detection						
	VDG3/4 incremental cancers detected with supplemental US 5 per1000 examinations						
	False-positive (recall) rate, MRI 41.15 per 1000 examinations						
	Biopsy rate, MRI 3.03%						
	Proportion of cancers detected by supplemental MRI that are DCIS 14.3%						
Intervention costs	Multiple data sources were used: systematic reviews of effectiveness and utility, published studies reporting costs, and cohort						
	studies embedded in existing NBSPs.						
	Cost data referenced plus expert opinion.						
	Costs						
	Mammography £54						
	Follow-up, mean £95						
	Biopsy, mean £160						
	NPI 1 treatment, mean £11,630						
	NPI 2 treatment, mean £12,978						
	NPI 3 treatment, mean £15,405						

	Advanced cancer, mean	C22 440						
		1 £25,449						
	Screening ABUS £80							
	Screening HHUS £80							
	Screening MRI £220 Stratification process £10 57							
		tratification process £10.57 Costs to individual women were excluded from the analysis						
Indirect costs								
Health-state valuations/utilities		•	of effectiveness and utility, published studies reporting costs, and cohort					
	studies embedded in ex	cisting NBSPs.						
	Utilities referenced							
	Utility							
	Early breast cancer, first	•						
	Early breast cancer, sub							
	Advanced breast cancer	· · · · · · · · · · · · · · · · · · ·						
		r, subsequent years 0.685						
Modelling	-	lel (discrete event simulation)						
	A de novo model was de	eveloped.						
	The conceptualisation process identified that the model required three components to represent: the stratification							
	breast cancer natural history with screening, and the diagnosis and treatment process after a cancer detected by screening. A							
	discrete event simulation (DES) model was used to represent these three components.							
Transition probabilities for model	Extensive definitions of	Extensive definitions of various parameters/equations used; also referenced to supplementary material						
Time horizon	Lifetime							
Discount rates applied in the model	3.5% for both costs and	benefits (base case)						
for costs and outcomes	3.5% for costs and 1.5%	for benefits (sensitivity analy	vsis)					
Results/analysis: Measure of benefit	QALYs	· · · · · · · · · · · · · · · · · · ·						
reported								
Clinical outcome/benefits estimated	Screening program	QALYs (3.5% discount rate)	Cost (£,2015; 3.5% DR)					
for each intervention/strategy	No screening	17.6919	246					
	Current UK NBSP	17.7095	654					
	Risk 1	17.7119	694					
	Risk 2	17.7181	858					
	Masking	17.7102	809					

	Risk 1 and masking	17.7124	870					
Synthesis of costs and benefits	Screening program ICER vs. No screening (3.5% DR) UK NBSP (3.5% DR) No screening (1.5% health, 3.5% costs) UK NBSP (1.5% health, 3.5% costs)							
	No screening	NA	NA	NA	NA			
	Current UK NBSP	£23,197	NA	£11,343	NA			
	Risk 1	£22,413	£16,689	£11,363	£11,565			
	Risk 2	£23,435	£23,924	£11,425	£11,592			
	Masking	£30,772	£212,947	£15,065	£105,412			
	Risk 1 and masking	£30,532	£75,254	£14,707	£33,199			
	DR = discount rate							
Statistical analysis Sensitivity analysis	The ICERs for the rema QALY for risk 1 stratifie stratified NBSP. The risk 1 and risk 2 st stratified NBSP does n When compared with Not shown	aining comparisons we ed NBSP compared w ratified NBSPs were ot appear to be a co no screening, all scr	were £23,197 per QALY with masking, and £26,7 relatively cost-effective st-effective alternative eening programs may be	for the current NBSP compa 49 for risk 2 stratified NBSP when compared with the cu when compared with the cu e considered cost-effective.				
				quantify the effect of the j				
Scenarios tested in sensitivity analysis	Input parameters and	discount rates were	varied					
Results of the sensitivity analysis	Using an alternative discounting rate of 3.5% for costs and 1.5% for benefits resulted in relatively lower estimated incremental cost-effectiveness ratios (ICERs) for all stratified NBSPs compared with the UK NBSP.							
	parameter values (α2 stratified programs we base-case value for ICI sensitive to the treatm	and mean tumour si ere moderately sensi ERs to increase beyo nent cost parameter	ze at clinical detection) itive to the cost of strati nd a threshold of £30,00 s; varying these parame	and screening performance fication although costs wou 00 per QALY. In all alternati ters, however, did not grea	e sensitive to natural history of mammography (β2). ICERs for ald need to be several times the ve programs, total costs were tly change the ICERs compared cates; varying utility weights			

	moderately altered the ICERs of stratified programs compared with the NBSP. The results were relatively insensitive (within the ranges tested) to the probability of recall, costs of MRI, the relative sensitivity of mammography by VDG group, and US/MRI additional cancer detection rate.
Conclusions/implications	A risk stratified NBSP is potentially a cost-effective use of health care resources when compared with the current UK NBSP.
Implications of the evaluation for	This early model-based cost-effectiveness analysis provides indicative evidence for decision makers to understand the key
practice	drivers of costs and QALYs for exemplar stratified NBSP. Key drivers of cost-effectiveness were discount rate, natural history
	model parameters, mammographic sensitivity, and biopsy rates for recalled cases. A key assumption was that the risk model
	used in the stratification process was perfectly calibrated to the population.

Table c: Quality assessment of studies using CHEERS

	Giuliano	0 001784	Sprague	Weigert
CHEERS checklist ³³	2013 ⁸⁰	Gray 2017 ⁸⁴	2015 ⁸⁵	2012 ⁸¹
Title and abstract				
1 Title: Identify the study as an economic evaluation, or use				
more specific terms such as ``cost-effectiveness analysis``, and	Ν	Y	Y	Ν
describe the interventions compared.				
2 Abstract: Provide a structured summary of objectives,				
methods including study design and inputs, results including	*	Y	Y	Ν
base case and uncertainty analyses, and conclusions.				
Introduction				
3 Background & objectives: Provide an explicit statement of				
the broader context for the study. Present the study question	Y	Y	Y	*
and its relevance for health policy or practice decisions.				
Methods				
4 Target Population and Subgroups: Describe characteristics of				
the base case population and subgroups analysed including	Y	Y	Y	Ν
why they were chosen.				

	1	-		1
5 Setting and Location: State relevant aspects of the system(s)				
in which the decision(s) need(s) to be made.	Ν	Y	Y	Y
6 Study perspective: Describe the perspective of the study and	*	Y	Y	N
relate this to the costs being evaluated.		T	T	IN
7 Comparators: Describe the interventions or strategies being	Y	Y	Y	Y
compared and state why they were chosen.	I	I	I	1
8 Time Horizon: State the time horizon(s) over which costs and	*	Y	Y	Y
consequences are being evaluated and say why appropriate.		T	T	T
9 Discount Rate: Report the choice of discount rate(s) used for	N	Y	Y	N
costs and outcomes and say why appropriate.	IN	T	T	IN
10 Choice of Health Outcomes: Describe what outcomes were				
used as the measure(s) of benefit in the evaluation and their	*	Y	Y	*
relevance for the type of analysis performed.				
11a Measurement of Effectiveness - Single Study-Based		N/A	N/A	
Estimates: Describe fully the design features of the single	*			*
effectiveness study and why the single study was a sufficient				
source of clinical effectiveness data.				
11b Measurement of Effectiveness - Synthesis-based				
Estimates: Describe fully the methods used for identification of	N/A	Y	Y	N/A
included studies and clinical effectiveness data synthesis of	IN/A			
clinical effectiveness data.				
12 Measurement and Valuation of Preference-based				
Outcomes: If applicable, describe the population and methods	Ν	*	*	N/A
used to elicit preferences for health outcomes.				
13a Estimating Resources and Costs - Single Study-based				
onomic evaluation: Describe approaches used to estimate			NI / A	*
resource use associated with the alternative interventions.	N	N/A	N/A N/A	
Describe primary or secondary research methods for valuing				

NI / A	V	*	
	Ť		N/A
Ν	Y	Y	N
Ν	Y	*	N
N	V	V	N
IN	Ŷ	Y	N
NI	X	Y	Ν
N	Y		
Ν	Υ	Y	N
	N N	N Y N Y N Y N Y N Y	N Y Y N Y Y N Y * N Y Y N Y Y

uncertainty where appropriate. We strongly recommend the				
use of a table to show the input values.				
19. Incremental costs and outcomes: For each intervention,				
report mean values for the main categories of estimated costs				
and outcomes of interest, as well as mean differences between	*	Y	Y	*
the comparator groups. If applicable, report incremental cost-				
effectiveness ratios.				
20a Characterizing Uncertainty - Single study-based economic				
evaluation: Describe the effects of sampling uncertainty for the				
estimated incremental cost and incremental effectiveness,	Ν	N/A	N/A	N
parameters together with the impact of methodological				
assumptions.				
20b Characterizing Uncertainty - Model-based economic				
evaluation: Describe the effects on the results of uncertainty	N/A	Y	*	N/A
for all input parameters, and uncertainty related to the	N/A	1		N/A
structure of the model and assumptions.				
21 Characterizing Heterogeneity: If applicable, report				
differences in costs, outcomes or in cost-effectiveness that can				
be explained by variations between subgroups of patients with	Ν	N	N	N/A
different baseline characteristics or other observed variability				
in effects that are not reducible by more information.				
Discussion				
22 Study Findings, Limitations, Generalizability, and Current				
Knowledge: Summarize key study findings and describe how				
they support the conclusions reached. Discuss limitations and	Y	Y	Y	Y
the generalizability of the findings and how the findings fit with				
current knowledge.				
Other				

23 Source of Funding: Describe how the study was funded and the role of the funder in the identification, design, conduct and reporting of the analysis. Describe other non-monetary sources of support.	N	Y	Y	N
24 Conflicts of Interest: Describe any potential for conflict of interest among study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors' recommendations	N	N	Y	Y

Key: y = yes, n = no, N/A = not applicable and * = partially completed

Appendix 7 Criteria for appraising the viability, effectiveness and appropriateness of a screening programme

UK National Screening Committee criteria for screening programmes published in 2015²⁸ are:

1. The condition

1. The condition should be an important health problem as judged by its frequency and/or severity. The epidemiology, incidence, prevalence and natural history of the condition should be understood, including development from latent to declared disease and/or there should be robust evidence about the association between the risk or disease marker and serious or treatable disease.

2. All the cost-effective primary prevention interventions should have been implemented as far as practicable.

3. If the carriers of a mutation are identified as a result of screening the natural history of people with this status should be understood, including the psychological implications.

2. The test

4. There should be a simple, safe, precise and validated screening test.

5. The distribution of test values in the target population should be known and a suitable cut-off level defined and agreed.

6. The test, from sample collection to delivery of results, should be acceptable to the target population.

7. There should be an agreed policy on the further diagnostic investigation of individuals with a positive test result and on the choices available to those individuals.

8. If the test is for a particular mutation or set of genetic variants the method for their selection and the means through which these will be kept under review in the programme should be clearly set out.

3. The intervention

9. There should be an effective intervention for patients identified through screening, with evidence that intervention at a pre-symptomatic phase leads to better outcomes for the screened individual compared with usual care. Evidence relating to wider benefits of screening, for example those relating to family members, should be taken into account where available. However, where there is no prospect of benefit for the individual screened then the screening programme should not be further considered.

 There should be agreed evidence based policies covering which individuals should be offered interventions and the appropriate intervention to be offered.
 241

4. The screening programme

11. There should be evidence from high quality randomised controlled trials that the screening programme is effective in reducing mortality or morbidity. Where screening is aimed solely at providing information to allow the person being screened to make an "informed choice" (such as Down's syndrome or cystic fibrosis carrier screening), there must be evidence from high quality trials that the test accurately measures risk. The information that is provided about the test and its outcome must be of value and readily understood by the individual being screened.

12. There should be evidence that the complete screening programme (test, diagnostic procedures, treatment/ intervention) is clinically, socially and ethically acceptable to health professionals and the public.

13. The benefit gained by individuals from the screening programme should outweigh any harms, for example from overdiagnosis, overtreatment, false positives, false reassurance, uncertain findings and complications.

14. The opportunity cost of the screening programme (including testing, diagnosis and treatment, administration, training and quality assurance) should be economically balanced in relation to expenditure on medical care as a whole (value for money). Assessment against this criteria should have regard to evidence from cost benefit and/or cost effectiveness analyses and have regard to the effective use of available resource.

5. Implementation criteria

15. Clinical management of the condition and patient outcomes should be optimised in all health care providers prior to participation in a screening programme.

16. All other options for managing the condition should have been considered (such as improving treatment or providing other services), to ensure that no more cost effective intervention could be introduced or current interventions increased within the resources available.

17. There should be a plan for managing and monitoring the screening programme and an agreed set of quality assurance standards.

18. Adequate staffing and facilities for testing, diagnosis, treatment and programme management should be available prior to the commencement of the screening programme.

19. Evidence-based information, explaining the purpose and potential consequences of screening, investigation and preventative intervention or treatment, should be made available to potential participants to assist them in making an informed choice.

20. Public pressure for widening the eligibility criteria for reducing the screening interval, and for increasing the sensitivity of the testing process, should be anticipated. Decisions about these parameters should be scientifically justifiable to the public.

6. References

• Department of Health, Screening of pregnant women for hepatitis B and immunisation of babies at risk. London: Dept of Health, 1998 (Health Service Circular : HSC 1998/127).

- Wilson JMG, Jungner G. Principles and practice of screening for disease. Public Health Paper Number 34. Geneva: WHO, 1968.
- Cochrane AL. Holland WW. Validation of screening procedures. Br Med Bull. 1971, 27, 3.
- Sackett DL, Holland WW. Controversy in the detection of disease. Lancet 1975;2:357-9.
- Wald NJ (Editor). Antenatal and Neonatal screening. Oxford University Press, 1984.
- Holland WW, Stewart S. Screening in Healthcare. The Nuffield Provincial Hospitals Trust, 1990.
- Gray JAM. Dimensions and definitions of screening. Milton Keynes: NHS Executive Anglia and Oxford, Research and Development.
- Angela Raffle/Muir Gray Screening Evidence and Practice, Oxford University Press 2007.